$4x^{4} + 4y^{3} + 5x^{2} + y + 1geq 12xy$ for all positive $x,y$












1












$begingroup$


Prove this inequality: $$4x^4 + 4y^3 + 5x^2 + y + 1 geq 12xy$$ if $x$ and $y$ are real and positive.



Please, I am a beginner and have no idea how to solve this, so don't use any strange theorems.










share|cite|improve this question











$endgroup$












  • $begingroup$
    from a graph it looks like it might be enough that $y>0$
    $endgroup$
    – Mirko
    Dec 8 '14 at 18:31










  • $begingroup$
    Sure, if it is true for $y>0$ then $x<0$ would make RHS negative, while LHS is independent of $sgn(x)$.
    $endgroup$
    – Milly
    Dec 8 '14 at 18:38
















1












$begingroup$


Prove this inequality: $$4x^4 + 4y^3 + 5x^2 + y + 1 geq 12xy$$ if $x$ and $y$ are real and positive.



Please, I am a beginner and have no idea how to solve this, so don't use any strange theorems.










share|cite|improve this question











$endgroup$












  • $begingroup$
    from a graph it looks like it might be enough that $y>0$
    $endgroup$
    – Mirko
    Dec 8 '14 at 18:31










  • $begingroup$
    Sure, if it is true for $y>0$ then $x<0$ would make RHS negative, while LHS is independent of $sgn(x)$.
    $endgroup$
    – Milly
    Dec 8 '14 at 18:38














1












1








1


1



$begingroup$


Prove this inequality: $$4x^4 + 4y^3 + 5x^2 + y + 1 geq 12xy$$ if $x$ and $y$ are real and positive.



Please, I am a beginner and have no idea how to solve this, so don't use any strange theorems.










share|cite|improve this question











$endgroup$




Prove this inequality: $$4x^4 + 4y^3 + 5x^2 + y + 1 geq 12xy$$ if $x$ and $y$ are real and positive.



Please, I am a beginner and have no idea how to solve this, so don't use any strange theorems.







algebra-precalculus inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 28 '15 at 2:16









Alex Ravsky

43.5k32583




43.5k32583










asked Dec 8 '14 at 18:18









VriskVrisk

12012




12012












  • $begingroup$
    from a graph it looks like it might be enough that $y>0$
    $endgroup$
    – Mirko
    Dec 8 '14 at 18:31










  • $begingroup$
    Sure, if it is true for $y>0$ then $x<0$ would make RHS negative, while LHS is independent of $sgn(x)$.
    $endgroup$
    – Milly
    Dec 8 '14 at 18:38


















  • $begingroup$
    from a graph it looks like it might be enough that $y>0$
    $endgroup$
    – Mirko
    Dec 8 '14 at 18:31










  • $begingroup$
    Sure, if it is true for $y>0$ then $x<0$ would make RHS negative, while LHS is independent of $sgn(x)$.
    $endgroup$
    – Milly
    Dec 8 '14 at 18:38
















$begingroup$
from a graph it looks like it might be enough that $y>0$
$endgroup$
– Mirko
Dec 8 '14 at 18:31




$begingroup$
from a graph it looks like it might be enough that $y>0$
$endgroup$
– Mirko
Dec 8 '14 at 18:31












$begingroup$
Sure, if it is true for $y>0$ then $x<0$ would make RHS negative, while LHS is independent of $sgn(x)$.
$endgroup$
– Milly
Dec 8 '14 at 18:38




$begingroup$
Sure, if it is true for $y>0$ then $x<0$ would make RHS negative, while LHS is independent of $sgn(x)$.
$endgroup$
– Milly
Dec 8 '14 at 18:38










1 Answer
1






active

oldest

votes


















0












$begingroup$

I shall use only the inequality $a+bge 2sqrt{ab}.$ We have



$$4x^4+1ge 2sqrt{4x^4cdot 1}=4x^2,$$
$$4y^3+yge 2sqrt{4y^3cdot y}=4y^2.$$



Then
$$4x^4 + 4y^3 + 5x^2 + y + 1ge 4x^2+4y^2+5x^2ge 2sqrt{9x^2cdot 4y^2}=12xy.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    AM-GM for the win!
    $endgroup$
    – Daniel W. Farlow
    Jan 28 '15 at 2:10












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1057814%2f4x4-4y3-5x2-y-1-geq-12xy-for-all-positive-x-y%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

I shall use only the inequality $a+bge 2sqrt{ab}.$ We have



$$4x^4+1ge 2sqrt{4x^4cdot 1}=4x^2,$$
$$4y^3+yge 2sqrt{4y^3cdot y}=4y^2.$$



Then
$$4x^4 + 4y^3 + 5x^2 + y + 1ge 4x^2+4y^2+5x^2ge 2sqrt{9x^2cdot 4y^2}=12xy.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    AM-GM for the win!
    $endgroup$
    – Daniel W. Farlow
    Jan 28 '15 at 2:10
















0












$begingroup$

I shall use only the inequality $a+bge 2sqrt{ab}.$ We have



$$4x^4+1ge 2sqrt{4x^4cdot 1}=4x^2,$$
$$4y^3+yge 2sqrt{4y^3cdot y}=4y^2.$$



Then
$$4x^4 + 4y^3 + 5x^2 + y + 1ge 4x^2+4y^2+5x^2ge 2sqrt{9x^2cdot 4y^2}=12xy.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    AM-GM for the win!
    $endgroup$
    – Daniel W. Farlow
    Jan 28 '15 at 2:10














0












0








0





$begingroup$

I shall use only the inequality $a+bge 2sqrt{ab}.$ We have



$$4x^4+1ge 2sqrt{4x^4cdot 1}=4x^2,$$
$$4y^3+yge 2sqrt{4y^3cdot y}=4y^2.$$



Then
$$4x^4 + 4y^3 + 5x^2 + y + 1ge 4x^2+4y^2+5x^2ge 2sqrt{9x^2cdot 4y^2}=12xy.$$






share|cite|improve this answer









$endgroup$



I shall use only the inequality $a+bge 2sqrt{ab}.$ We have



$$4x^4+1ge 2sqrt{4x^4cdot 1}=4x^2,$$
$$4y^3+yge 2sqrt{4y^3cdot y}=4y^2.$$



Then
$$4x^4 + 4y^3 + 5x^2 + y + 1ge 4x^2+4y^2+5x^2ge 2sqrt{9x^2cdot 4y^2}=12xy.$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 28 '15 at 2:06









Alex RavskyAlex Ravsky

43.5k32583




43.5k32583












  • $begingroup$
    AM-GM for the win!
    $endgroup$
    – Daniel W. Farlow
    Jan 28 '15 at 2:10


















  • $begingroup$
    AM-GM for the win!
    $endgroup$
    – Daniel W. Farlow
    Jan 28 '15 at 2:10
















$begingroup$
AM-GM for the win!
$endgroup$
– Daniel W. Farlow
Jan 28 '15 at 2:10




$begingroup$
AM-GM for the win!
$endgroup$
– Daniel W. Farlow
Jan 28 '15 at 2:10


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1057814%2f4x4-4y3-5x2-y-1-geq-12xy-for-all-positive-x-y%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna