$4x^{4} + 4y^{3} + 5x^{2} + y + 1geq 12xy$ for all positive $x,y$
$begingroup$
Prove this inequality: $$4x^4 + 4y^3 + 5x^2 + y + 1 geq 12xy$$ if $x$ and $y$ are real and positive.
Please, I am a beginner and have no idea how to solve this, so don't use any strange theorems.
algebra-precalculus inequality
$endgroup$
add a comment |
$begingroup$
Prove this inequality: $$4x^4 + 4y^3 + 5x^2 + y + 1 geq 12xy$$ if $x$ and $y$ are real and positive.
Please, I am a beginner and have no idea how to solve this, so don't use any strange theorems.
algebra-precalculus inequality
$endgroup$
$begingroup$
from a graph it looks like it might be enough that $y>0$
$endgroup$
– Mirko
Dec 8 '14 at 18:31
$begingroup$
Sure, if it is true for $y>0$ then $x<0$ would make RHS negative, while LHS is independent of $sgn(x)$.
$endgroup$
– Milly
Dec 8 '14 at 18:38
add a comment |
$begingroup$
Prove this inequality: $$4x^4 + 4y^3 + 5x^2 + y + 1 geq 12xy$$ if $x$ and $y$ are real and positive.
Please, I am a beginner and have no idea how to solve this, so don't use any strange theorems.
algebra-precalculus inequality
$endgroup$
Prove this inequality: $$4x^4 + 4y^3 + 5x^2 + y + 1 geq 12xy$$ if $x$ and $y$ are real and positive.
Please, I am a beginner and have no idea how to solve this, so don't use any strange theorems.
algebra-precalculus inequality
algebra-precalculus inequality
edited Jan 28 '15 at 2:16
Alex Ravsky
43.5k32583
43.5k32583
asked Dec 8 '14 at 18:18
VriskVrisk
12012
12012
$begingroup$
from a graph it looks like it might be enough that $y>0$
$endgroup$
– Mirko
Dec 8 '14 at 18:31
$begingroup$
Sure, if it is true for $y>0$ then $x<0$ would make RHS negative, while LHS is independent of $sgn(x)$.
$endgroup$
– Milly
Dec 8 '14 at 18:38
add a comment |
$begingroup$
from a graph it looks like it might be enough that $y>0$
$endgroup$
– Mirko
Dec 8 '14 at 18:31
$begingroup$
Sure, if it is true for $y>0$ then $x<0$ would make RHS negative, while LHS is independent of $sgn(x)$.
$endgroup$
– Milly
Dec 8 '14 at 18:38
$begingroup$
from a graph it looks like it might be enough that $y>0$
$endgroup$
– Mirko
Dec 8 '14 at 18:31
$begingroup$
from a graph it looks like it might be enough that $y>0$
$endgroup$
– Mirko
Dec 8 '14 at 18:31
$begingroup$
Sure, if it is true for $y>0$ then $x<0$ would make RHS negative, while LHS is independent of $sgn(x)$.
$endgroup$
– Milly
Dec 8 '14 at 18:38
$begingroup$
Sure, if it is true for $y>0$ then $x<0$ would make RHS negative, while LHS is independent of $sgn(x)$.
$endgroup$
– Milly
Dec 8 '14 at 18:38
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I shall use only the inequality $a+bge 2sqrt{ab}.$ We have
$$4x^4+1ge 2sqrt{4x^4cdot 1}=4x^2,$$
$$4y^3+yge 2sqrt{4y^3cdot y}=4y^2.$$
Then
$$4x^4 + 4y^3 + 5x^2 + y + 1ge 4x^2+4y^2+5x^2ge 2sqrt{9x^2cdot 4y^2}=12xy.$$
$endgroup$
$begingroup$
AM-GM for the win!
$endgroup$
– Daniel W. Farlow
Jan 28 '15 at 2:10
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1057814%2f4x4-4y3-5x2-y-1-geq-12xy-for-all-positive-x-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I shall use only the inequality $a+bge 2sqrt{ab}.$ We have
$$4x^4+1ge 2sqrt{4x^4cdot 1}=4x^2,$$
$$4y^3+yge 2sqrt{4y^3cdot y}=4y^2.$$
Then
$$4x^4 + 4y^3 + 5x^2 + y + 1ge 4x^2+4y^2+5x^2ge 2sqrt{9x^2cdot 4y^2}=12xy.$$
$endgroup$
$begingroup$
AM-GM for the win!
$endgroup$
– Daniel W. Farlow
Jan 28 '15 at 2:10
add a comment |
$begingroup$
I shall use only the inequality $a+bge 2sqrt{ab}.$ We have
$$4x^4+1ge 2sqrt{4x^4cdot 1}=4x^2,$$
$$4y^3+yge 2sqrt{4y^3cdot y}=4y^2.$$
Then
$$4x^4 + 4y^3 + 5x^2 + y + 1ge 4x^2+4y^2+5x^2ge 2sqrt{9x^2cdot 4y^2}=12xy.$$
$endgroup$
$begingroup$
AM-GM for the win!
$endgroup$
– Daniel W. Farlow
Jan 28 '15 at 2:10
add a comment |
$begingroup$
I shall use only the inequality $a+bge 2sqrt{ab}.$ We have
$$4x^4+1ge 2sqrt{4x^4cdot 1}=4x^2,$$
$$4y^3+yge 2sqrt{4y^3cdot y}=4y^2.$$
Then
$$4x^4 + 4y^3 + 5x^2 + y + 1ge 4x^2+4y^2+5x^2ge 2sqrt{9x^2cdot 4y^2}=12xy.$$
$endgroup$
I shall use only the inequality $a+bge 2sqrt{ab}.$ We have
$$4x^4+1ge 2sqrt{4x^4cdot 1}=4x^2,$$
$$4y^3+yge 2sqrt{4y^3cdot y}=4y^2.$$
Then
$$4x^4 + 4y^3 + 5x^2 + y + 1ge 4x^2+4y^2+5x^2ge 2sqrt{9x^2cdot 4y^2}=12xy.$$
answered Jan 28 '15 at 2:06
Alex RavskyAlex Ravsky
43.5k32583
43.5k32583
$begingroup$
AM-GM for the win!
$endgroup$
– Daniel W. Farlow
Jan 28 '15 at 2:10
add a comment |
$begingroup$
AM-GM for the win!
$endgroup$
– Daniel W. Farlow
Jan 28 '15 at 2:10
$begingroup$
AM-GM for the win!
$endgroup$
– Daniel W. Farlow
Jan 28 '15 at 2:10
$begingroup$
AM-GM for the win!
$endgroup$
– Daniel W. Farlow
Jan 28 '15 at 2:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1057814%2f4x4-4y3-5x2-y-1-geq-12xy-for-all-positive-x-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
from a graph it looks like it might be enough that $y>0$
$endgroup$
– Mirko
Dec 8 '14 at 18:31
$begingroup$
Sure, if it is true for $y>0$ then $x<0$ would make RHS negative, while LHS is independent of $sgn(x)$.
$endgroup$
– Milly
Dec 8 '14 at 18:38