Is there any relation between real and complex character functions of irreducible representations of compact...












0












$begingroup$


Let $G$ be a compact lie group and $U$ a real $G$-module. One can define the real character as $chi_U^mathbb{R}:Gtomathbb{R}$ as $chi_U^mathbb{R}(g)=operatorname{Tr}(l_g)$. If $V$ is a complex $G$-module one can define its character as $chi_V:Gtomathbb{C}$ as $chi_V(g)=operatorname{Tr}(l_g)$. Also, one can also define a extension map $e_+(U)=mathbb{C}otimes_mathbb{R} U$ that maps a real $G$-module into a complex $G$-module. Is there any relation between $chi_U^mathbb{R}$ and $chi_{e_+(U)}$ for irreducible $U$?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    If $E$ is a real vector space then $ mathbb{C} otimes_{mathbb{R}}E =1 otimes_{mathbb{R}}E+iotimes_{mathbb{R}} E =E+iE$ where $(a+ib)(u+iv) = au-bv+i(bu+av)$ and the $mathbb{R}$-linear maps $E to mathbb{R}$ have a natural $mathbb{C}$-linear extension $mathbb{C} otimes_{mathbb{R}}E to mathbb{C}$ (extension means they stay the same on $E$). Here $E = End(U)$ and $Tr : End(U) to mathbb{R}$.
    $endgroup$
    – reuns
    Jan 15 at 0:31










  • $begingroup$
    But $End(Cotimes_mathbb{R} U)=Cotimes_mathbb{R} End(U)$?
    $endgroup$
    – Andre Gomes
    Jan 15 at 3:35












  • $begingroup$
    $End_k(V)$ : the $k$-linear maps $V to V$
    $endgroup$
    – reuns
    Jan 15 at 4:07


















0












$begingroup$


Let $G$ be a compact lie group and $U$ a real $G$-module. One can define the real character as $chi_U^mathbb{R}:Gtomathbb{R}$ as $chi_U^mathbb{R}(g)=operatorname{Tr}(l_g)$. If $V$ is a complex $G$-module one can define its character as $chi_V:Gtomathbb{C}$ as $chi_V(g)=operatorname{Tr}(l_g)$. Also, one can also define a extension map $e_+(U)=mathbb{C}otimes_mathbb{R} U$ that maps a real $G$-module into a complex $G$-module. Is there any relation between $chi_U^mathbb{R}$ and $chi_{e_+(U)}$ for irreducible $U$?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    If $E$ is a real vector space then $ mathbb{C} otimes_{mathbb{R}}E =1 otimes_{mathbb{R}}E+iotimes_{mathbb{R}} E =E+iE$ where $(a+ib)(u+iv) = au-bv+i(bu+av)$ and the $mathbb{R}$-linear maps $E to mathbb{R}$ have a natural $mathbb{C}$-linear extension $mathbb{C} otimes_{mathbb{R}}E to mathbb{C}$ (extension means they stay the same on $E$). Here $E = End(U)$ and $Tr : End(U) to mathbb{R}$.
    $endgroup$
    – reuns
    Jan 15 at 0:31










  • $begingroup$
    But $End(Cotimes_mathbb{R} U)=Cotimes_mathbb{R} End(U)$?
    $endgroup$
    – Andre Gomes
    Jan 15 at 3:35












  • $begingroup$
    $End_k(V)$ : the $k$-linear maps $V to V$
    $endgroup$
    – reuns
    Jan 15 at 4:07
















0












0








0





$begingroup$


Let $G$ be a compact lie group and $U$ a real $G$-module. One can define the real character as $chi_U^mathbb{R}:Gtomathbb{R}$ as $chi_U^mathbb{R}(g)=operatorname{Tr}(l_g)$. If $V$ is a complex $G$-module one can define its character as $chi_V:Gtomathbb{C}$ as $chi_V(g)=operatorname{Tr}(l_g)$. Also, one can also define a extension map $e_+(U)=mathbb{C}otimes_mathbb{R} U$ that maps a real $G$-module into a complex $G$-module. Is there any relation between $chi_U^mathbb{R}$ and $chi_{e_+(U)}$ for irreducible $U$?










share|cite|improve this question









$endgroup$




Let $G$ be a compact lie group and $U$ a real $G$-module. One can define the real character as $chi_U^mathbb{R}:Gtomathbb{R}$ as $chi_U^mathbb{R}(g)=operatorname{Tr}(l_g)$. If $V$ is a complex $G$-module one can define its character as $chi_V:Gtomathbb{C}$ as $chi_V(g)=operatorname{Tr}(l_g)$. Also, one can also define a extension map $e_+(U)=mathbb{C}otimes_mathbb{R} U$ that maps a real $G$-module into a complex $G$-module. Is there any relation between $chi_U^mathbb{R}$ and $chi_{e_+(U)}$ for irreducible $U$?







representation-theory characters






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 14 at 22:47









Andre GomesAndre Gomes

930516




930516








  • 1




    $begingroup$
    If $E$ is a real vector space then $ mathbb{C} otimes_{mathbb{R}}E =1 otimes_{mathbb{R}}E+iotimes_{mathbb{R}} E =E+iE$ where $(a+ib)(u+iv) = au-bv+i(bu+av)$ and the $mathbb{R}$-linear maps $E to mathbb{R}$ have a natural $mathbb{C}$-linear extension $mathbb{C} otimes_{mathbb{R}}E to mathbb{C}$ (extension means they stay the same on $E$). Here $E = End(U)$ and $Tr : End(U) to mathbb{R}$.
    $endgroup$
    – reuns
    Jan 15 at 0:31










  • $begingroup$
    But $End(Cotimes_mathbb{R} U)=Cotimes_mathbb{R} End(U)$?
    $endgroup$
    – Andre Gomes
    Jan 15 at 3:35












  • $begingroup$
    $End_k(V)$ : the $k$-linear maps $V to V$
    $endgroup$
    – reuns
    Jan 15 at 4:07
















  • 1




    $begingroup$
    If $E$ is a real vector space then $ mathbb{C} otimes_{mathbb{R}}E =1 otimes_{mathbb{R}}E+iotimes_{mathbb{R}} E =E+iE$ where $(a+ib)(u+iv) = au-bv+i(bu+av)$ and the $mathbb{R}$-linear maps $E to mathbb{R}$ have a natural $mathbb{C}$-linear extension $mathbb{C} otimes_{mathbb{R}}E to mathbb{C}$ (extension means they stay the same on $E$). Here $E = End(U)$ and $Tr : End(U) to mathbb{R}$.
    $endgroup$
    – reuns
    Jan 15 at 0:31










  • $begingroup$
    But $End(Cotimes_mathbb{R} U)=Cotimes_mathbb{R} End(U)$?
    $endgroup$
    – Andre Gomes
    Jan 15 at 3:35












  • $begingroup$
    $End_k(V)$ : the $k$-linear maps $V to V$
    $endgroup$
    – reuns
    Jan 15 at 4:07










1




1




$begingroup$
If $E$ is a real vector space then $ mathbb{C} otimes_{mathbb{R}}E =1 otimes_{mathbb{R}}E+iotimes_{mathbb{R}} E =E+iE$ where $(a+ib)(u+iv) = au-bv+i(bu+av)$ and the $mathbb{R}$-linear maps $E to mathbb{R}$ have a natural $mathbb{C}$-linear extension $mathbb{C} otimes_{mathbb{R}}E to mathbb{C}$ (extension means they stay the same on $E$). Here $E = End(U)$ and $Tr : End(U) to mathbb{R}$.
$endgroup$
– reuns
Jan 15 at 0:31




$begingroup$
If $E$ is a real vector space then $ mathbb{C} otimes_{mathbb{R}}E =1 otimes_{mathbb{R}}E+iotimes_{mathbb{R}} E =E+iE$ where $(a+ib)(u+iv) = au-bv+i(bu+av)$ and the $mathbb{R}$-linear maps $E to mathbb{R}$ have a natural $mathbb{C}$-linear extension $mathbb{C} otimes_{mathbb{R}}E to mathbb{C}$ (extension means they stay the same on $E$). Here $E = End(U)$ and $Tr : End(U) to mathbb{R}$.
$endgroup$
– reuns
Jan 15 at 0:31












$begingroup$
But $End(Cotimes_mathbb{R} U)=Cotimes_mathbb{R} End(U)$?
$endgroup$
– Andre Gomes
Jan 15 at 3:35






$begingroup$
But $End(Cotimes_mathbb{R} U)=Cotimes_mathbb{R} End(U)$?
$endgroup$
– Andre Gomes
Jan 15 at 3:35














$begingroup$
$End_k(V)$ : the $k$-linear maps $V to V$
$endgroup$
– reuns
Jan 15 at 4:07






$begingroup$
$End_k(V)$ : the $k$-linear maps $V to V$
$endgroup$
– reuns
Jan 15 at 4:07












0






active

oldest

votes












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073857%2fis-there-any-relation-between-real-and-complex-character-functions-of-irreducibl%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073857%2fis-there-any-relation-between-real-and-complex-character-functions-of-irreducibl%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna