Do I have something wrong when solving $y'+2y=6$?
$begingroup$
Solve $$y'+2y=6.$$
When I do $$y'=2(3-y)impliesintfrac{mathrm dy}{3-y}=2intmathrm dximplies-ln{|3-y|}=2x+cimplies3-y=ke^{-2x}therefore y=boxed{3-ke^{-2x}},quad c,kinBbb R.$$ It satisfies the ODE because $$2ke^{-2x}+6-2ke^{-2x}=6=6.$$ However, when I try another solution, namely first solve the homogeneous equation: $$y'+2y=0impliesintfrac{mathrm dy}y=-2intmathrm dximpliesln{|y|}=-2x+cimplies y=ke^{-2x},quad c,kinBbb R$$ then $y_P=k(x)e^{-2x}$, so then $$y'_P=k'(x)e^{-2x}-2k(x)e^{-2x}implies k'(x)e^{-2x}-2k(x)e^{-2x}+2k(x)e^{-2x}=6implies k'(x)=6e^{2x}implies k(x)=3e^{2x}implies y_P=3e^{2x}e^{-2x}=3therefore y=y_H+y_P=boxed{3+ke^{-2x}},$$ where this solution also satisfies $y'+2y=6$, because $$-2ke^{-2x}+6+2ke^{-2x}=6=6.$$ My question is, how can we express both solutions with the same expression of $y$? I would like both solutions to be identical, but how?
Thanks!
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
Solve $$y'+2y=6.$$
When I do $$y'=2(3-y)impliesintfrac{mathrm dy}{3-y}=2intmathrm dximplies-ln{|3-y|}=2x+cimplies3-y=ke^{-2x}therefore y=boxed{3-ke^{-2x}},quad c,kinBbb R.$$ It satisfies the ODE because $$2ke^{-2x}+6-2ke^{-2x}=6=6.$$ However, when I try another solution, namely first solve the homogeneous equation: $$y'+2y=0impliesintfrac{mathrm dy}y=-2intmathrm dximpliesln{|y|}=-2x+cimplies y=ke^{-2x},quad c,kinBbb R$$ then $y_P=k(x)e^{-2x}$, so then $$y'_P=k'(x)e^{-2x}-2k(x)e^{-2x}implies k'(x)e^{-2x}-2k(x)e^{-2x}+2k(x)e^{-2x}=6implies k'(x)=6e^{2x}implies k(x)=3e^{2x}implies y_P=3e^{2x}e^{-2x}=3therefore y=y_H+y_P=boxed{3+ke^{-2x}},$$ where this solution also satisfies $y'+2y=6$, because $$-2ke^{-2x}+6+2ke^{-2x}=6=6.$$ My question is, how can we express both solutions with the same expression of $y$? I would like both solutions to be identical, but how?
Thanks!
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
Solve $$y'+2y=6.$$
When I do $$y'=2(3-y)impliesintfrac{mathrm dy}{3-y}=2intmathrm dximplies-ln{|3-y|}=2x+cimplies3-y=ke^{-2x}therefore y=boxed{3-ke^{-2x}},quad c,kinBbb R.$$ It satisfies the ODE because $$2ke^{-2x}+6-2ke^{-2x}=6=6.$$ However, when I try another solution, namely first solve the homogeneous equation: $$y'+2y=0impliesintfrac{mathrm dy}y=-2intmathrm dximpliesln{|y|}=-2x+cimplies y=ke^{-2x},quad c,kinBbb R$$ then $y_P=k(x)e^{-2x}$, so then $$y'_P=k'(x)e^{-2x}-2k(x)e^{-2x}implies k'(x)e^{-2x}-2k(x)e^{-2x}+2k(x)e^{-2x}=6implies k'(x)=6e^{2x}implies k(x)=3e^{2x}implies y_P=3e^{2x}e^{-2x}=3therefore y=y_H+y_P=boxed{3+ke^{-2x}},$$ where this solution also satisfies $y'+2y=6$, because $$-2ke^{-2x}+6+2ke^{-2x}=6=6.$$ My question is, how can we express both solutions with the same expression of $y$? I would like both solutions to be identical, but how?
Thanks!
ordinary-differential-equations
$endgroup$
Solve $$y'+2y=6.$$
When I do $$y'=2(3-y)impliesintfrac{mathrm dy}{3-y}=2intmathrm dximplies-ln{|3-y|}=2x+cimplies3-y=ke^{-2x}therefore y=boxed{3-ke^{-2x}},quad c,kinBbb R.$$ It satisfies the ODE because $$2ke^{-2x}+6-2ke^{-2x}=6=6.$$ However, when I try another solution, namely first solve the homogeneous equation: $$y'+2y=0impliesintfrac{mathrm dy}y=-2intmathrm dximpliesln{|y|}=-2x+cimplies y=ke^{-2x},quad c,kinBbb R$$ then $y_P=k(x)e^{-2x}$, so then $$y'_P=k'(x)e^{-2x}-2k(x)e^{-2x}implies k'(x)e^{-2x}-2k(x)e^{-2x}+2k(x)e^{-2x}=6implies k'(x)=6e^{2x}implies k(x)=3e^{2x}implies y_P=3e^{2x}e^{-2x}=3therefore y=y_H+y_P=boxed{3+ke^{-2x}},$$ where this solution also satisfies $y'+2y=6$, because $$-2ke^{-2x}+6+2ke^{-2x}=6=6.$$ My question is, how can we express both solutions with the same expression of $y$? I would like both solutions to be identical, but how?
Thanks!
ordinary-differential-equations
ordinary-differential-equations
asked Jan 15 at 0:26
manoooohmanooooh
6651518
6651518
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Both solutions are the same, $k$ is a real number, you can write $3+(-k)e^{-2x}$.
$endgroup$
$begingroup$
Oh I forgot that, thank you!!
$endgroup$
– manooooh
Jan 15 at 0:32
add a comment |
$begingroup$
They are identical. You have no reason to expect $k $ from one method to be exactly the same from the other method. If you include an initial condition, you'll get the same solution in both cases.
$endgroup$
$begingroup$
There is indeed an initial condition, but I wanted to know why I end up with two "different" solutions. Thanks!
$endgroup$
– manooooh
Jan 15 at 0:34
add a comment |
$begingroup$
To see both are the same:
$$-ln|3-y|=2x+A Rightarrow ln|3-y|=-2x-A Rightarrow |3-y|=e^{-2x-A} Rightarrow |3-y|=e^{-A}e^{-2x} Rightarrow 3-y=-Ce^{-2x} Rightarrow y=3+Ce^{-2x}.$$
Alternatively (instead of variations):
$$y=y_h+y_p=Ce^{-2x}+A;\
[Ce^{-2x}+A]'+2[Ce^{-2x}+A]=6 Rightarrow \
2A=6 Rightarrow A=3 Rightarrow \
y=Ce^{-2x}+3.$$
$endgroup$
$begingroup$
Oh, you did $e^{-A}to-C$ when $|3-y|to(3-y)$ instead of $e^{-A}to C$, that is nice! Also I like your approach $ddotsmile$.
$endgroup$
– manooooh
Jan 15 at 1:15
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073929%2fdo-i-have-something-wrong-when-solving-y2y-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Both solutions are the same, $k$ is a real number, you can write $3+(-k)e^{-2x}$.
$endgroup$
$begingroup$
Oh I forgot that, thank you!!
$endgroup$
– manooooh
Jan 15 at 0:32
add a comment |
$begingroup$
Both solutions are the same, $k$ is a real number, you can write $3+(-k)e^{-2x}$.
$endgroup$
$begingroup$
Oh I forgot that, thank you!!
$endgroup$
– manooooh
Jan 15 at 0:32
add a comment |
$begingroup$
Both solutions are the same, $k$ is a real number, you can write $3+(-k)e^{-2x}$.
$endgroup$
Both solutions are the same, $k$ is a real number, you can write $3+(-k)e^{-2x}$.
edited Jan 15 at 4:41
Moo
5,68531020
5,68531020
answered Jan 15 at 0:31
Tsemo AristideTsemo Aristide
60.9k11446
60.9k11446
$begingroup$
Oh I forgot that, thank you!!
$endgroup$
– manooooh
Jan 15 at 0:32
add a comment |
$begingroup$
Oh I forgot that, thank you!!
$endgroup$
– manooooh
Jan 15 at 0:32
$begingroup$
Oh I forgot that, thank you!!
$endgroup$
– manooooh
Jan 15 at 0:32
$begingroup$
Oh I forgot that, thank you!!
$endgroup$
– manooooh
Jan 15 at 0:32
add a comment |
$begingroup$
They are identical. You have no reason to expect $k $ from one method to be exactly the same from the other method. If you include an initial condition, you'll get the same solution in both cases.
$endgroup$
$begingroup$
There is indeed an initial condition, but I wanted to know why I end up with two "different" solutions. Thanks!
$endgroup$
– manooooh
Jan 15 at 0:34
add a comment |
$begingroup$
They are identical. You have no reason to expect $k $ from one method to be exactly the same from the other method. If you include an initial condition, you'll get the same solution in both cases.
$endgroup$
$begingroup$
There is indeed an initial condition, but I wanted to know why I end up with two "different" solutions. Thanks!
$endgroup$
– manooooh
Jan 15 at 0:34
add a comment |
$begingroup$
They are identical. You have no reason to expect $k $ from one method to be exactly the same from the other method. If you include an initial condition, you'll get the same solution in both cases.
$endgroup$
They are identical. You have no reason to expect $k $ from one method to be exactly the same from the other method. If you include an initial condition, you'll get the same solution in both cases.
answered Jan 15 at 0:32
Martin ArgeramiMartin Argerami
130k1184185
130k1184185
$begingroup$
There is indeed an initial condition, but I wanted to know why I end up with two "different" solutions. Thanks!
$endgroup$
– manooooh
Jan 15 at 0:34
add a comment |
$begingroup$
There is indeed an initial condition, but I wanted to know why I end up with two "different" solutions. Thanks!
$endgroup$
– manooooh
Jan 15 at 0:34
$begingroup$
There is indeed an initial condition, but I wanted to know why I end up with two "different" solutions. Thanks!
$endgroup$
– manooooh
Jan 15 at 0:34
$begingroup$
There is indeed an initial condition, but I wanted to know why I end up with two "different" solutions. Thanks!
$endgroup$
– manooooh
Jan 15 at 0:34
add a comment |
$begingroup$
To see both are the same:
$$-ln|3-y|=2x+A Rightarrow ln|3-y|=-2x-A Rightarrow |3-y|=e^{-2x-A} Rightarrow |3-y|=e^{-A}e^{-2x} Rightarrow 3-y=-Ce^{-2x} Rightarrow y=3+Ce^{-2x}.$$
Alternatively (instead of variations):
$$y=y_h+y_p=Ce^{-2x}+A;\
[Ce^{-2x}+A]'+2[Ce^{-2x}+A]=6 Rightarrow \
2A=6 Rightarrow A=3 Rightarrow \
y=Ce^{-2x}+3.$$
$endgroup$
$begingroup$
Oh, you did $e^{-A}to-C$ when $|3-y|to(3-y)$ instead of $e^{-A}to C$, that is nice! Also I like your approach $ddotsmile$.
$endgroup$
– manooooh
Jan 15 at 1:15
add a comment |
$begingroup$
To see both are the same:
$$-ln|3-y|=2x+A Rightarrow ln|3-y|=-2x-A Rightarrow |3-y|=e^{-2x-A} Rightarrow |3-y|=e^{-A}e^{-2x} Rightarrow 3-y=-Ce^{-2x} Rightarrow y=3+Ce^{-2x}.$$
Alternatively (instead of variations):
$$y=y_h+y_p=Ce^{-2x}+A;\
[Ce^{-2x}+A]'+2[Ce^{-2x}+A]=6 Rightarrow \
2A=6 Rightarrow A=3 Rightarrow \
y=Ce^{-2x}+3.$$
$endgroup$
$begingroup$
Oh, you did $e^{-A}to-C$ when $|3-y|to(3-y)$ instead of $e^{-A}to C$, that is nice! Also I like your approach $ddotsmile$.
$endgroup$
– manooooh
Jan 15 at 1:15
add a comment |
$begingroup$
To see both are the same:
$$-ln|3-y|=2x+A Rightarrow ln|3-y|=-2x-A Rightarrow |3-y|=e^{-2x-A} Rightarrow |3-y|=e^{-A}e^{-2x} Rightarrow 3-y=-Ce^{-2x} Rightarrow y=3+Ce^{-2x}.$$
Alternatively (instead of variations):
$$y=y_h+y_p=Ce^{-2x}+A;\
[Ce^{-2x}+A]'+2[Ce^{-2x}+A]=6 Rightarrow \
2A=6 Rightarrow A=3 Rightarrow \
y=Ce^{-2x}+3.$$
$endgroup$
To see both are the same:
$$-ln|3-y|=2x+A Rightarrow ln|3-y|=-2x-A Rightarrow |3-y|=e^{-2x-A} Rightarrow |3-y|=e^{-A}e^{-2x} Rightarrow 3-y=-Ce^{-2x} Rightarrow y=3+Ce^{-2x}.$$
Alternatively (instead of variations):
$$y=y_h+y_p=Ce^{-2x}+A;\
[Ce^{-2x}+A]'+2[Ce^{-2x}+A]=6 Rightarrow \
2A=6 Rightarrow A=3 Rightarrow \
y=Ce^{-2x}+3.$$
answered Jan 15 at 1:08
farruhotafarruhota
22.5k2942
22.5k2942
$begingroup$
Oh, you did $e^{-A}to-C$ when $|3-y|to(3-y)$ instead of $e^{-A}to C$, that is nice! Also I like your approach $ddotsmile$.
$endgroup$
– manooooh
Jan 15 at 1:15
add a comment |
$begingroup$
Oh, you did $e^{-A}to-C$ when $|3-y|to(3-y)$ instead of $e^{-A}to C$, that is nice! Also I like your approach $ddotsmile$.
$endgroup$
– manooooh
Jan 15 at 1:15
$begingroup$
Oh, you did $e^{-A}to-C$ when $|3-y|to(3-y)$ instead of $e^{-A}to C$, that is nice! Also I like your approach $ddotsmile$.
$endgroup$
– manooooh
Jan 15 at 1:15
$begingroup$
Oh, you did $e^{-A}to-C$ when $|3-y|to(3-y)$ instead of $e^{-A}to C$, that is nice! Also I like your approach $ddotsmile$.
$endgroup$
– manooooh
Jan 15 at 1:15
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073929%2fdo-i-have-something-wrong-when-solving-y2y-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown