How can we write the expansion of $frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}.$












1












$begingroup$


How can we write the expansion of
$$frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}.$$



I know that
$$frac{1}{(e^t+1)^{n+1}}=sum_{k=0}^infty (-1)^k binom{n+k}{k} e^{kt}.$$



Could you please give me an idea?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Suggestion: You can expand the numerator as $$sum_{j=0}^{n-1}{n-1choose j}(-1)^je^{(n-j)t}$$I am unsure on how to combine the sums however into a single summation
    $endgroup$
    – John Doe
    Jan 14 at 23:55


















1












$begingroup$


How can we write the expansion of
$$frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}.$$



I know that
$$frac{1}{(e^t+1)^{n+1}}=sum_{k=0}^infty (-1)^k binom{n+k}{k} e^{kt}.$$



Could you please give me an idea?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Suggestion: You can expand the numerator as $$sum_{j=0}^{n-1}{n-1choose j}(-1)^je^{(n-j)t}$$I am unsure on how to combine the sums however into a single summation
    $endgroup$
    – John Doe
    Jan 14 at 23:55
















1












1








1





$begingroup$


How can we write the expansion of
$$frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}.$$



I know that
$$frac{1}{(e^t+1)^{n+1}}=sum_{k=0}^infty (-1)^k binom{n+k}{k} e^{kt}.$$



Could you please give me an idea?










share|cite|improve this question









$endgroup$




How can we write the expansion of
$$frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}.$$



I know that
$$frac{1}{(e^t+1)^{n+1}}=sum_{k=0}^infty (-1)^k binom{n+k}{k} e^{kt}.$$



Could you please give me an idea?







number-theory power-series taylor-expansion stirling-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 14 at 23:44









Soma WickSoma Wick

355




355












  • $begingroup$
    Suggestion: You can expand the numerator as $$sum_{j=0}^{n-1}{n-1choose j}(-1)^je^{(n-j)t}$$I am unsure on how to combine the sums however into a single summation
    $endgroup$
    – John Doe
    Jan 14 at 23:55




















  • $begingroup$
    Suggestion: You can expand the numerator as $$sum_{j=0}^{n-1}{n-1choose j}(-1)^je^{(n-j)t}$$I am unsure on how to combine the sums however into a single summation
    $endgroup$
    – John Doe
    Jan 14 at 23:55


















$begingroup$
Suggestion: You can expand the numerator as $$sum_{j=0}^{n-1}{n-1choose j}(-1)^je^{(n-j)t}$$I am unsure on how to combine the sums however into a single summation
$endgroup$
– John Doe
Jan 14 at 23:55






$begingroup$
Suggestion: You can expand the numerator as $$sum_{j=0}^{n-1}{n-1choose j}(-1)^je^{(n-j)t}$$I am unsure on how to combine the sums however into a single summation
$endgroup$
– John Doe
Jan 14 at 23:55












3 Answers
3






active

oldest

votes


















1












$begingroup$

If you wish to perform a series expansion in terms of $e^t$, then define $$f(z) = frac{z(z-1)^{n-1}}{(z+1)^{n+1}}$$ and your desired expansion corresponds to the expansion of $f(z)$ with respect to $z = 0$, followed by the substitution $z = e^t$.



Next, observe $$sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right] = frac{(-1)^n n!}{(z+1)^{n+1}},$$ so that $$frac{1}{(z+1)^{n+1}} = sum_{k=n}^infty binom{k}{n} (-z)^{k-n} = sum_{k=0}^infty binom{k+n}{n} (-z)^k.$$ This can of course be found from the binomial series. Consequently, with the convention that $binom{a}{b} = 0$ if $a < b$, and the transformation of indices $s = k+m$, $j = m$,
$$begin{align*}
f(z) &= z sum_{m=0}^{n-1} binom{n-1}{m} z^m (-1)^{n-1-m} sum_{k=0}^infty binom{k+n}{n} (-z)^k \
&= z sum_{k=0}^infty sum_{m=0}^{n-1} binom{n-1}{m} binom{k+n}{n} (-1)^{n-1-m+k} z^{k+m} \
&= sum_{s=0}^infty sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1} z^{s+1}. \
end{align*}$$

The coefficient for $z^{s+1}$, which we define as $$c(s) = sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1},$$ is expressible as a hypergeometric function but doesn't appear to have a simple closed form for general $n$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
    $endgroup$
    – Claude Leibovici
    Jan 15 at 5:09










  • $begingroup$
    @heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
    $endgroup$
    – Soma Wick
    Jan 15 at 22:11





















0












$begingroup$

This is what Wolfram alpha produces (https://www.wolframalpha.com/input/?i=series+e%5Et(e%5Et-1)%5E%7Bn-1%7D%7D%2F%7B(e%5Et%2B1)%5E%7Bn%2B1%7D):



enter image description here






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    I think that writing the general term could be difficult.



    For a truncated series, what I would do considering
    $$y=frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}$$ is to take logarithms of both sides and expand as Taylor series at $t=0$. This should give
    $$log(y)=(n-1) log (t)+log left(2^{-n-1}right)-frac{(n+2)}{12}
    t^2+frac{(7 n+8) }{1440}t^4-frac{(31 n+32) }{90720}t^6+frac{(127 n+128)
    }{4838400}t^8-frac{(511 n+512) }{239500800}t^{10}+Oleft(t^{12}right)$$
    and continue with Taylor series using $y=e^{log(y)}$ and here start the complexity since we should arrive to something looking like
    $$frac{y}{t^{n-1}}=2^{-(n+1)}+sum_{k=1}^p (-1)^k alpha_k,t^{2k} $$ with
    $$alpha_1=frac{2^{-(n+3)}}{3} (n+2)$$
    $$alpha_2=frac{2^{-(n+6)}}{45} (n+4) (5 n+7)$$
    $$alpha_3=frac{2^{-(n+8)}}{2835} (n+6)(35 n^2+147 n+124)$$
    $$alpha_4=frac{2^{-(n+12)}}{42525} (n+8)(175 n^3+1470 n^2+3509 n+2286)$$
    $$alpha_5=frac{2^{-(n+14)}}{1403325} (n+10)(385 n^4+5390 n^3+24959 n^2+44242 n+24528)$$
    Another possible approach would be to write



    $$y=frac{1}{4} text{sech}^2left(frac{t}{2}right)tanh ^nleft(frac{t}{2}right)$$ and use
    $$tanh left(frac{t}{2}right)=2sum_{k=1}^infty frac{ left(4^k-1right) B_{2 k} }{(2 k)!}t^{2 k-1}$$
    $$text{sech}left(frac{t}{2}right)=sum_{k=0}^infty frac{ E_{2 k} }{4 ^k,(2 k)!}t^{2 k}$$ which give, for $y$, an expression that .... you just need to expand !






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073903%2fhow-can-we-write-the-expansion-of-fracetet-1n-1et1n1%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      If you wish to perform a series expansion in terms of $e^t$, then define $$f(z) = frac{z(z-1)^{n-1}}{(z+1)^{n+1}}$$ and your desired expansion corresponds to the expansion of $f(z)$ with respect to $z = 0$, followed by the substitution $z = e^t$.



      Next, observe $$sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right] = frac{(-1)^n n!}{(z+1)^{n+1}},$$ so that $$frac{1}{(z+1)^{n+1}} = sum_{k=n}^infty binom{k}{n} (-z)^{k-n} = sum_{k=0}^infty binom{k+n}{n} (-z)^k.$$ This can of course be found from the binomial series. Consequently, with the convention that $binom{a}{b} = 0$ if $a < b$, and the transformation of indices $s = k+m$, $j = m$,
      $$begin{align*}
      f(z) &= z sum_{m=0}^{n-1} binom{n-1}{m} z^m (-1)^{n-1-m} sum_{k=0}^infty binom{k+n}{n} (-z)^k \
      &= z sum_{k=0}^infty sum_{m=0}^{n-1} binom{n-1}{m} binom{k+n}{n} (-1)^{n-1-m+k} z^{k+m} \
      &= sum_{s=0}^infty sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1} z^{s+1}. \
      end{align*}$$

      The coefficient for $z^{s+1}$, which we define as $$c(s) = sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1},$$ is expressible as a hypergeometric function but doesn't appear to have a simple closed form for general $n$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
        $endgroup$
        – Claude Leibovici
        Jan 15 at 5:09










      • $begingroup$
        @heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
        $endgroup$
        – Soma Wick
        Jan 15 at 22:11


















      1












      $begingroup$

      If you wish to perform a series expansion in terms of $e^t$, then define $$f(z) = frac{z(z-1)^{n-1}}{(z+1)^{n+1}}$$ and your desired expansion corresponds to the expansion of $f(z)$ with respect to $z = 0$, followed by the substitution $z = e^t$.



      Next, observe $$sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right] = frac{(-1)^n n!}{(z+1)^{n+1}},$$ so that $$frac{1}{(z+1)^{n+1}} = sum_{k=n}^infty binom{k}{n} (-z)^{k-n} = sum_{k=0}^infty binom{k+n}{n} (-z)^k.$$ This can of course be found from the binomial series. Consequently, with the convention that $binom{a}{b} = 0$ if $a < b$, and the transformation of indices $s = k+m$, $j = m$,
      $$begin{align*}
      f(z) &= z sum_{m=0}^{n-1} binom{n-1}{m} z^m (-1)^{n-1-m} sum_{k=0}^infty binom{k+n}{n} (-z)^k \
      &= z sum_{k=0}^infty sum_{m=0}^{n-1} binom{n-1}{m} binom{k+n}{n} (-1)^{n-1-m+k} z^{k+m} \
      &= sum_{s=0}^infty sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1} z^{s+1}. \
      end{align*}$$

      The coefficient for $z^{s+1}$, which we define as $$c(s) = sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1},$$ is expressible as a hypergeometric function but doesn't appear to have a simple closed form for general $n$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
        $endgroup$
        – Claude Leibovici
        Jan 15 at 5:09










      • $begingroup$
        @heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
        $endgroup$
        – Soma Wick
        Jan 15 at 22:11
















      1












      1








      1





      $begingroup$

      If you wish to perform a series expansion in terms of $e^t$, then define $$f(z) = frac{z(z-1)^{n-1}}{(z+1)^{n+1}}$$ and your desired expansion corresponds to the expansion of $f(z)$ with respect to $z = 0$, followed by the substitution $z = e^t$.



      Next, observe $$sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right] = frac{(-1)^n n!}{(z+1)^{n+1}},$$ so that $$frac{1}{(z+1)^{n+1}} = sum_{k=n}^infty binom{k}{n} (-z)^{k-n} = sum_{k=0}^infty binom{k+n}{n} (-z)^k.$$ This can of course be found from the binomial series. Consequently, with the convention that $binom{a}{b} = 0$ if $a < b$, and the transformation of indices $s = k+m$, $j = m$,
      $$begin{align*}
      f(z) &= z sum_{m=0}^{n-1} binom{n-1}{m} z^m (-1)^{n-1-m} sum_{k=0}^infty binom{k+n}{n} (-z)^k \
      &= z sum_{k=0}^infty sum_{m=0}^{n-1} binom{n-1}{m} binom{k+n}{n} (-1)^{n-1-m+k} z^{k+m} \
      &= sum_{s=0}^infty sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1} z^{s+1}. \
      end{align*}$$

      The coefficient for $z^{s+1}$, which we define as $$c(s) = sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1},$$ is expressible as a hypergeometric function but doesn't appear to have a simple closed form for general $n$.






      share|cite|improve this answer









      $endgroup$



      If you wish to perform a series expansion in terms of $e^t$, then define $$f(z) = frac{z(z-1)^{n-1}}{(z+1)^{n+1}}$$ and your desired expansion corresponds to the expansion of $f(z)$ with respect to $z = 0$, followed by the substitution $z = e^t$.



      Next, observe $$sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right] = frac{(-1)^n n!}{(z+1)^{n+1}},$$ so that $$frac{1}{(z+1)^{n+1}} = sum_{k=n}^infty binom{k}{n} (-z)^{k-n} = sum_{k=0}^infty binom{k+n}{n} (-z)^k.$$ This can of course be found from the binomial series. Consequently, with the convention that $binom{a}{b} = 0$ if $a < b$, and the transformation of indices $s = k+m$, $j = m$,
      $$begin{align*}
      f(z) &= z sum_{m=0}^{n-1} binom{n-1}{m} z^m (-1)^{n-1-m} sum_{k=0}^infty binom{k+n}{n} (-z)^k \
      &= z sum_{k=0}^infty sum_{m=0}^{n-1} binom{n-1}{m} binom{k+n}{n} (-1)^{n-1-m+k} z^{k+m} \
      &= sum_{s=0}^infty sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1} z^{s+1}. \
      end{align*}$$

      The coefficient for $z^{s+1}$, which we define as $$c(s) = sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1},$$ is expressible as a hypergeometric function but doesn't appear to have a simple closed form for general $n$.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Jan 15 at 1:32









      heropupheropup

      65.7k865104




      65.7k865104












      • $begingroup$
        Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
        $endgroup$
        – Claude Leibovici
        Jan 15 at 5:09










      • $begingroup$
        @heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
        $endgroup$
        – Soma Wick
        Jan 15 at 22:11




















      • $begingroup$
        Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
        $endgroup$
        – Claude Leibovici
        Jan 15 at 5:09










      • $begingroup$
        @heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
        $endgroup$
        – Soma Wick
        Jan 15 at 22:11


















      $begingroup$
      Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
      $endgroup$
      – Claude Leibovici
      Jan 15 at 5:09




      $begingroup$
      Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
      $endgroup$
      – Claude Leibovici
      Jan 15 at 5:09












      $begingroup$
      @heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
      $endgroup$
      – Soma Wick
      Jan 15 at 22:11






      $begingroup$
      @heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
      $endgroup$
      – Soma Wick
      Jan 15 at 22:11













      0












      $begingroup$

      This is what Wolfram alpha produces (https://www.wolframalpha.com/input/?i=series+e%5Et(e%5Et-1)%5E%7Bn-1%7D%7D%2F%7B(e%5Et%2B1)%5E%7Bn%2B1%7D):



      enter image description here






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        This is what Wolfram alpha produces (https://www.wolframalpha.com/input/?i=series+e%5Et(e%5Et-1)%5E%7Bn-1%7D%7D%2F%7B(e%5Et%2B1)%5E%7Bn%2B1%7D):



        enter image description here






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          This is what Wolfram alpha produces (https://www.wolframalpha.com/input/?i=series+e%5Et(e%5Et-1)%5E%7Bn-1%7D%7D%2F%7B(e%5Et%2B1)%5E%7Bn%2B1%7D):



          enter image description here






          share|cite|improve this answer









          $endgroup$



          This is what Wolfram alpha produces (https://www.wolframalpha.com/input/?i=series+e%5Et(e%5Et-1)%5E%7Bn-1%7D%7D%2F%7B(e%5Et%2B1)%5E%7Bn%2B1%7D):



          enter image description here







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 14 at 23:59









          ershersh

          518114




          518114























              0












              $begingroup$

              I think that writing the general term could be difficult.



              For a truncated series, what I would do considering
              $$y=frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}$$ is to take logarithms of both sides and expand as Taylor series at $t=0$. This should give
              $$log(y)=(n-1) log (t)+log left(2^{-n-1}right)-frac{(n+2)}{12}
              t^2+frac{(7 n+8) }{1440}t^4-frac{(31 n+32) }{90720}t^6+frac{(127 n+128)
              }{4838400}t^8-frac{(511 n+512) }{239500800}t^{10}+Oleft(t^{12}right)$$
              and continue with Taylor series using $y=e^{log(y)}$ and here start the complexity since we should arrive to something looking like
              $$frac{y}{t^{n-1}}=2^{-(n+1)}+sum_{k=1}^p (-1)^k alpha_k,t^{2k} $$ with
              $$alpha_1=frac{2^{-(n+3)}}{3} (n+2)$$
              $$alpha_2=frac{2^{-(n+6)}}{45} (n+4) (5 n+7)$$
              $$alpha_3=frac{2^{-(n+8)}}{2835} (n+6)(35 n^2+147 n+124)$$
              $$alpha_4=frac{2^{-(n+12)}}{42525} (n+8)(175 n^3+1470 n^2+3509 n+2286)$$
              $$alpha_5=frac{2^{-(n+14)}}{1403325} (n+10)(385 n^4+5390 n^3+24959 n^2+44242 n+24528)$$
              Another possible approach would be to write



              $$y=frac{1}{4} text{sech}^2left(frac{t}{2}right)tanh ^nleft(frac{t}{2}right)$$ and use
              $$tanh left(frac{t}{2}right)=2sum_{k=1}^infty frac{ left(4^k-1right) B_{2 k} }{(2 k)!}t^{2 k-1}$$
              $$text{sech}left(frac{t}{2}right)=sum_{k=0}^infty frac{ E_{2 k} }{4 ^k,(2 k)!}t^{2 k}$$ which give, for $y$, an expression that .... you just need to expand !






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                I think that writing the general term could be difficult.



                For a truncated series, what I would do considering
                $$y=frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}$$ is to take logarithms of both sides and expand as Taylor series at $t=0$. This should give
                $$log(y)=(n-1) log (t)+log left(2^{-n-1}right)-frac{(n+2)}{12}
                t^2+frac{(7 n+8) }{1440}t^4-frac{(31 n+32) }{90720}t^6+frac{(127 n+128)
                }{4838400}t^8-frac{(511 n+512) }{239500800}t^{10}+Oleft(t^{12}right)$$
                and continue with Taylor series using $y=e^{log(y)}$ and here start the complexity since we should arrive to something looking like
                $$frac{y}{t^{n-1}}=2^{-(n+1)}+sum_{k=1}^p (-1)^k alpha_k,t^{2k} $$ with
                $$alpha_1=frac{2^{-(n+3)}}{3} (n+2)$$
                $$alpha_2=frac{2^{-(n+6)}}{45} (n+4) (5 n+7)$$
                $$alpha_3=frac{2^{-(n+8)}}{2835} (n+6)(35 n^2+147 n+124)$$
                $$alpha_4=frac{2^{-(n+12)}}{42525} (n+8)(175 n^3+1470 n^2+3509 n+2286)$$
                $$alpha_5=frac{2^{-(n+14)}}{1403325} (n+10)(385 n^4+5390 n^3+24959 n^2+44242 n+24528)$$
                Another possible approach would be to write



                $$y=frac{1}{4} text{sech}^2left(frac{t}{2}right)tanh ^nleft(frac{t}{2}right)$$ and use
                $$tanh left(frac{t}{2}right)=2sum_{k=1}^infty frac{ left(4^k-1right) B_{2 k} }{(2 k)!}t^{2 k-1}$$
                $$text{sech}left(frac{t}{2}right)=sum_{k=0}^infty frac{ E_{2 k} }{4 ^k,(2 k)!}t^{2 k}$$ which give, for $y$, an expression that .... you just need to expand !






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  I think that writing the general term could be difficult.



                  For a truncated series, what I would do considering
                  $$y=frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}$$ is to take logarithms of both sides and expand as Taylor series at $t=0$. This should give
                  $$log(y)=(n-1) log (t)+log left(2^{-n-1}right)-frac{(n+2)}{12}
                  t^2+frac{(7 n+8) }{1440}t^4-frac{(31 n+32) }{90720}t^6+frac{(127 n+128)
                  }{4838400}t^8-frac{(511 n+512) }{239500800}t^{10}+Oleft(t^{12}right)$$
                  and continue with Taylor series using $y=e^{log(y)}$ and here start the complexity since we should arrive to something looking like
                  $$frac{y}{t^{n-1}}=2^{-(n+1)}+sum_{k=1}^p (-1)^k alpha_k,t^{2k} $$ with
                  $$alpha_1=frac{2^{-(n+3)}}{3} (n+2)$$
                  $$alpha_2=frac{2^{-(n+6)}}{45} (n+4) (5 n+7)$$
                  $$alpha_3=frac{2^{-(n+8)}}{2835} (n+6)(35 n^2+147 n+124)$$
                  $$alpha_4=frac{2^{-(n+12)}}{42525} (n+8)(175 n^3+1470 n^2+3509 n+2286)$$
                  $$alpha_5=frac{2^{-(n+14)}}{1403325} (n+10)(385 n^4+5390 n^3+24959 n^2+44242 n+24528)$$
                  Another possible approach would be to write



                  $$y=frac{1}{4} text{sech}^2left(frac{t}{2}right)tanh ^nleft(frac{t}{2}right)$$ and use
                  $$tanh left(frac{t}{2}right)=2sum_{k=1}^infty frac{ left(4^k-1right) B_{2 k} }{(2 k)!}t^{2 k-1}$$
                  $$text{sech}left(frac{t}{2}right)=sum_{k=0}^infty frac{ E_{2 k} }{4 ^k,(2 k)!}t^{2 k}$$ which give, for $y$, an expression that .... you just need to expand !






                  share|cite|improve this answer









                  $endgroup$



                  I think that writing the general term could be difficult.



                  For a truncated series, what I would do considering
                  $$y=frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}$$ is to take logarithms of both sides and expand as Taylor series at $t=0$. This should give
                  $$log(y)=(n-1) log (t)+log left(2^{-n-1}right)-frac{(n+2)}{12}
                  t^2+frac{(7 n+8) }{1440}t^4-frac{(31 n+32) }{90720}t^6+frac{(127 n+128)
                  }{4838400}t^8-frac{(511 n+512) }{239500800}t^{10}+Oleft(t^{12}right)$$
                  and continue with Taylor series using $y=e^{log(y)}$ and here start the complexity since we should arrive to something looking like
                  $$frac{y}{t^{n-1}}=2^{-(n+1)}+sum_{k=1}^p (-1)^k alpha_k,t^{2k} $$ with
                  $$alpha_1=frac{2^{-(n+3)}}{3} (n+2)$$
                  $$alpha_2=frac{2^{-(n+6)}}{45} (n+4) (5 n+7)$$
                  $$alpha_3=frac{2^{-(n+8)}}{2835} (n+6)(35 n^2+147 n+124)$$
                  $$alpha_4=frac{2^{-(n+12)}}{42525} (n+8)(175 n^3+1470 n^2+3509 n+2286)$$
                  $$alpha_5=frac{2^{-(n+14)}}{1403325} (n+10)(385 n^4+5390 n^3+24959 n^2+44242 n+24528)$$
                  Another possible approach would be to write



                  $$y=frac{1}{4} text{sech}^2left(frac{t}{2}right)tanh ^nleft(frac{t}{2}right)$$ and use
                  $$tanh left(frac{t}{2}right)=2sum_{k=1}^infty frac{ left(4^k-1right) B_{2 k} }{(2 k)!}t^{2 k-1}$$
                  $$text{sech}left(frac{t}{2}right)=sum_{k=0}^infty frac{ E_{2 k} }{4 ^k,(2 k)!}t^{2 k}$$ which give, for $y$, an expression that .... you just need to expand !







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 15 at 6:57









                  Claude LeiboviciClaude Leibovici

                  126k1158134




                  126k1158134






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073903%2fhow-can-we-write-the-expansion-of-fracetet-1n-1et1n1%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna