How can we write the expansion of $frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}.$
$begingroup$
How can we write the expansion of
$$frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}.$$
I know that
$$frac{1}{(e^t+1)^{n+1}}=sum_{k=0}^infty (-1)^k binom{n+k}{k} e^{kt}.$$
Could you please give me an idea?
number-theory power-series taylor-expansion stirling-numbers
$endgroup$
add a comment |
$begingroup$
How can we write the expansion of
$$frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}.$$
I know that
$$frac{1}{(e^t+1)^{n+1}}=sum_{k=0}^infty (-1)^k binom{n+k}{k} e^{kt}.$$
Could you please give me an idea?
number-theory power-series taylor-expansion stirling-numbers
$endgroup$
$begingroup$
Suggestion: You can expand the numerator as $$sum_{j=0}^{n-1}{n-1choose j}(-1)^je^{(n-j)t}$$I am unsure on how to combine the sums however into a single summation
$endgroup$
– John Doe
Jan 14 at 23:55
add a comment |
$begingroup$
How can we write the expansion of
$$frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}.$$
I know that
$$frac{1}{(e^t+1)^{n+1}}=sum_{k=0}^infty (-1)^k binom{n+k}{k} e^{kt}.$$
Could you please give me an idea?
number-theory power-series taylor-expansion stirling-numbers
$endgroup$
How can we write the expansion of
$$frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}.$$
I know that
$$frac{1}{(e^t+1)^{n+1}}=sum_{k=0}^infty (-1)^k binom{n+k}{k} e^{kt}.$$
Could you please give me an idea?
number-theory power-series taylor-expansion stirling-numbers
number-theory power-series taylor-expansion stirling-numbers
asked Jan 14 at 23:44
Soma WickSoma Wick
355
355
$begingroup$
Suggestion: You can expand the numerator as $$sum_{j=0}^{n-1}{n-1choose j}(-1)^je^{(n-j)t}$$I am unsure on how to combine the sums however into a single summation
$endgroup$
– John Doe
Jan 14 at 23:55
add a comment |
$begingroup$
Suggestion: You can expand the numerator as $$sum_{j=0}^{n-1}{n-1choose j}(-1)^je^{(n-j)t}$$I am unsure on how to combine the sums however into a single summation
$endgroup$
– John Doe
Jan 14 at 23:55
$begingroup$
Suggestion: You can expand the numerator as $$sum_{j=0}^{n-1}{n-1choose j}(-1)^je^{(n-j)t}$$I am unsure on how to combine the sums however into a single summation
$endgroup$
– John Doe
Jan 14 at 23:55
$begingroup$
Suggestion: You can expand the numerator as $$sum_{j=0}^{n-1}{n-1choose j}(-1)^je^{(n-j)t}$$I am unsure on how to combine the sums however into a single summation
$endgroup$
– John Doe
Jan 14 at 23:55
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
If you wish to perform a series expansion in terms of $e^t$, then define $$f(z) = frac{z(z-1)^{n-1}}{(z+1)^{n+1}}$$ and your desired expansion corresponds to the expansion of $f(z)$ with respect to $z = 0$, followed by the substitution $z = e^t$.
Next, observe $$sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right] = frac{(-1)^n n!}{(z+1)^{n+1}},$$ so that $$frac{1}{(z+1)^{n+1}} = sum_{k=n}^infty binom{k}{n} (-z)^{k-n} = sum_{k=0}^infty binom{k+n}{n} (-z)^k.$$ This can of course be found from the binomial series. Consequently, with the convention that $binom{a}{b} = 0$ if $a < b$, and the transformation of indices $s = k+m$, $j = m$,
$$begin{align*}
f(z) &= z sum_{m=0}^{n-1} binom{n-1}{m} z^m (-1)^{n-1-m} sum_{k=0}^infty binom{k+n}{n} (-z)^k \
&= z sum_{k=0}^infty sum_{m=0}^{n-1} binom{n-1}{m} binom{k+n}{n} (-1)^{n-1-m+k} z^{k+m} \
&= sum_{s=0}^infty sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1} z^{s+1}. \
end{align*}$$
The coefficient for $z^{s+1}$, which we define as $$c(s) = sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1},$$ is expressible as a hypergeometric function but doesn't appear to have a simple closed form for general $n$.
$endgroup$
$begingroup$
Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
$endgroup$
– Claude Leibovici
Jan 15 at 5:09
$begingroup$
@heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
$endgroup$
– Soma Wick
Jan 15 at 22:11
add a comment |
$begingroup$
This is what Wolfram alpha produces (https://www.wolframalpha.com/input/?i=series+e%5Et(e%5Et-1)%5E%7Bn-1%7D%7D%2F%7B(e%5Et%2B1)%5E%7Bn%2B1%7D):
$endgroup$
add a comment |
$begingroup$
I think that writing the general term could be difficult.
For a truncated series, what I would do considering
$$y=frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}$$ is to take logarithms of both sides and expand as Taylor series at $t=0$. This should give
$$log(y)=(n-1) log (t)+log left(2^{-n-1}right)-frac{(n+2)}{12}
t^2+frac{(7 n+8) }{1440}t^4-frac{(31 n+32) }{90720}t^6+frac{(127 n+128)
}{4838400}t^8-frac{(511 n+512) }{239500800}t^{10}+Oleft(t^{12}right)$$ and continue with Taylor series using $y=e^{log(y)}$ and here start the complexity since we should arrive to something looking like
$$frac{y}{t^{n-1}}=2^{-(n+1)}+sum_{k=1}^p (-1)^k alpha_k,t^{2k} $$ with
$$alpha_1=frac{2^{-(n+3)}}{3} (n+2)$$
$$alpha_2=frac{2^{-(n+6)}}{45} (n+4) (5 n+7)$$
$$alpha_3=frac{2^{-(n+8)}}{2835} (n+6)(35 n^2+147 n+124)$$
$$alpha_4=frac{2^{-(n+12)}}{42525} (n+8)(175 n^3+1470 n^2+3509 n+2286)$$
$$alpha_5=frac{2^{-(n+14)}}{1403325} (n+10)(385 n^4+5390 n^3+24959 n^2+44242 n+24528)$$
Another possible approach would be to write
$$y=frac{1}{4} text{sech}^2left(frac{t}{2}right)tanh ^nleft(frac{t}{2}right)$$ and use
$$tanh left(frac{t}{2}right)=2sum_{k=1}^infty frac{ left(4^k-1right) B_{2 k} }{(2 k)!}t^{2 k-1}$$
$$text{sech}left(frac{t}{2}right)=sum_{k=0}^infty frac{ E_{2 k} }{4 ^k,(2 k)!}t^{2 k}$$ which give, for $y$, an expression that .... you just need to expand !
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073903%2fhow-can-we-write-the-expansion-of-fracetet-1n-1et1n1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you wish to perform a series expansion in terms of $e^t$, then define $$f(z) = frac{z(z-1)^{n-1}}{(z+1)^{n+1}}$$ and your desired expansion corresponds to the expansion of $f(z)$ with respect to $z = 0$, followed by the substitution $z = e^t$.
Next, observe $$sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right] = frac{(-1)^n n!}{(z+1)^{n+1}},$$ so that $$frac{1}{(z+1)^{n+1}} = sum_{k=n}^infty binom{k}{n} (-z)^{k-n} = sum_{k=0}^infty binom{k+n}{n} (-z)^k.$$ This can of course be found from the binomial series. Consequently, with the convention that $binom{a}{b} = 0$ if $a < b$, and the transformation of indices $s = k+m$, $j = m$,
$$begin{align*}
f(z) &= z sum_{m=0}^{n-1} binom{n-1}{m} z^m (-1)^{n-1-m} sum_{k=0}^infty binom{k+n}{n} (-z)^k \
&= z sum_{k=0}^infty sum_{m=0}^{n-1} binom{n-1}{m} binom{k+n}{n} (-1)^{n-1-m+k} z^{k+m} \
&= sum_{s=0}^infty sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1} z^{s+1}. \
end{align*}$$
The coefficient for $z^{s+1}$, which we define as $$c(s) = sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1},$$ is expressible as a hypergeometric function but doesn't appear to have a simple closed form for general $n$.
$endgroup$
$begingroup$
Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
$endgroup$
– Claude Leibovici
Jan 15 at 5:09
$begingroup$
@heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
$endgroup$
– Soma Wick
Jan 15 at 22:11
add a comment |
$begingroup$
If you wish to perform a series expansion in terms of $e^t$, then define $$f(z) = frac{z(z-1)^{n-1}}{(z+1)^{n+1}}$$ and your desired expansion corresponds to the expansion of $f(z)$ with respect to $z = 0$, followed by the substitution $z = e^t$.
Next, observe $$sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right] = frac{(-1)^n n!}{(z+1)^{n+1}},$$ so that $$frac{1}{(z+1)^{n+1}} = sum_{k=n}^infty binom{k}{n} (-z)^{k-n} = sum_{k=0}^infty binom{k+n}{n} (-z)^k.$$ This can of course be found from the binomial series. Consequently, with the convention that $binom{a}{b} = 0$ if $a < b$, and the transformation of indices $s = k+m$, $j = m$,
$$begin{align*}
f(z) &= z sum_{m=0}^{n-1} binom{n-1}{m} z^m (-1)^{n-1-m} sum_{k=0}^infty binom{k+n}{n} (-z)^k \
&= z sum_{k=0}^infty sum_{m=0}^{n-1} binom{n-1}{m} binom{k+n}{n} (-1)^{n-1-m+k} z^{k+m} \
&= sum_{s=0}^infty sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1} z^{s+1}. \
end{align*}$$
The coefficient for $z^{s+1}$, which we define as $$c(s) = sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1},$$ is expressible as a hypergeometric function but doesn't appear to have a simple closed form for general $n$.
$endgroup$
$begingroup$
Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
$endgroup$
– Claude Leibovici
Jan 15 at 5:09
$begingroup$
@heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
$endgroup$
– Soma Wick
Jan 15 at 22:11
add a comment |
$begingroup$
If you wish to perform a series expansion in terms of $e^t$, then define $$f(z) = frac{z(z-1)^{n-1}}{(z+1)^{n+1}}$$ and your desired expansion corresponds to the expansion of $f(z)$ with respect to $z = 0$, followed by the substitution $z = e^t$.
Next, observe $$sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right] = frac{(-1)^n n!}{(z+1)^{n+1}},$$ so that $$frac{1}{(z+1)^{n+1}} = sum_{k=n}^infty binom{k}{n} (-z)^{k-n} = sum_{k=0}^infty binom{k+n}{n} (-z)^k.$$ This can of course be found from the binomial series. Consequently, with the convention that $binom{a}{b} = 0$ if $a < b$, and the transformation of indices $s = k+m$, $j = m$,
$$begin{align*}
f(z) &= z sum_{m=0}^{n-1} binom{n-1}{m} z^m (-1)^{n-1-m} sum_{k=0}^infty binom{k+n}{n} (-z)^k \
&= z sum_{k=0}^infty sum_{m=0}^{n-1} binom{n-1}{m} binom{k+n}{n} (-1)^{n-1-m+k} z^{k+m} \
&= sum_{s=0}^infty sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1} z^{s+1}. \
end{align*}$$
The coefficient for $z^{s+1}$, which we define as $$c(s) = sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1},$$ is expressible as a hypergeometric function but doesn't appear to have a simple closed form for general $n$.
$endgroup$
If you wish to perform a series expansion in terms of $e^t$, then define $$f(z) = frac{z(z-1)^{n-1}}{(z+1)^{n+1}}$$ and your desired expansion corresponds to the expansion of $f(z)$ with respect to $z = 0$, followed by the substitution $z = e^t$.
Next, observe $$sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right] = frac{(-1)^n n!}{(z+1)^{n+1}},$$ so that $$frac{1}{(z+1)^{n+1}} = sum_{k=n}^infty binom{k}{n} (-z)^{k-n} = sum_{k=0}^infty binom{k+n}{n} (-z)^k.$$ This can of course be found from the binomial series. Consequently, with the convention that $binom{a}{b} = 0$ if $a < b$, and the transformation of indices $s = k+m$, $j = m$,
$$begin{align*}
f(z) &= z sum_{m=0}^{n-1} binom{n-1}{m} z^m (-1)^{n-1-m} sum_{k=0}^infty binom{k+n}{n} (-z)^k \
&= z sum_{k=0}^infty sum_{m=0}^{n-1} binom{n-1}{m} binom{k+n}{n} (-1)^{n-1-m+k} z^{k+m} \
&= sum_{s=0}^infty sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1} z^{s+1}. \
end{align*}$$
The coefficient for $z^{s+1}$, which we define as $$c(s) = sum_{j=0}^{n-1} binom{n-1}{j} binom{s-j+n}{n} (-1)^{n+s-2j-1},$$ is expressible as a hypergeometric function but doesn't appear to have a simple closed form for general $n$.
answered Jan 15 at 1:32
heropupheropup
65.7k865104
65.7k865104
$begingroup$
Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
$endgroup$
– Claude Leibovici
Jan 15 at 5:09
$begingroup$
@heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
$endgroup$
– Soma Wick
Jan 15 at 22:11
add a comment |
$begingroup$
Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
$endgroup$
– Claude Leibovici
Jan 15 at 5:09
$begingroup$
@heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
$endgroup$
– Soma Wick
Jan 15 at 22:11
$begingroup$
Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
$endgroup$
– Claude Leibovici
Jan 15 at 5:09
$begingroup$
Would an expansion around $z=0$ when $z=e^t$ correspond to an expansion at $tto - infty$ ?
$endgroup$
– Claude Leibovici
Jan 15 at 5:09
$begingroup$
@heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
$endgroup$
– Soma Wick
Jan 15 at 22:11
$begingroup$
@heropup How did you obtain $sum_{k=n}^infty (-1)^k frac{k!}{(k-n)!} z^{k-n} = frac{d^n}{dz^n}left[frac{1}{z+1}right]$? Can we connecte it with the Stirling number of first kind?
$endgroup$
– Soma Wick
Jan 15 at 22:11
add a comment |
$begingroup$
This is what Wolfram alpha produces (https://www.wolframalpha.com/input/?i=series+e%5Et(e%5Et-1)%5E%7Bn-1%7D%7D%2F%7B(e%5Et%2B1)%5E%7Bn%2B1%7D):
$endgroup$
add a comment |
$begingroup$
This is what Wolfram alpha produces (https://www.wolframalpha.com/input/?i=series+e%5Et(e%5Et-1)%5E%7Bn-1%7D%7D%2F%7B(e%5Et%2B1)%5E%7Bn%2B1%7D):
$endgroup$
add a comment |
$begingroup$
This is what Wolfram alpha produces (https://www.wolframalpha.com/input/?i=series+e%5Et(e%5Et-1)%5E%7Bn-1%7D%7D%2F%7B(e%5Et%2B1)%5E%7Bn%2B1%7D):
$endgroup$
This is what Wolfram alpha produces (https://www.wolframalpha.com/input/?i=series+e%5Et(e%5Et-1)%5E%7Bn-1%7D%7D%2F%7B(e%5Et%2B1)%5E%7Bn%2B1%7D):
answered Jan 14 at 23:59
ershersh
518114
518114
add a comment |
add a comment |
$begingroup$
I think that writing the general term could be difficult.
For a truncated series, what I would do considering
$$y=frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}$$ is to take logarithms of both sides and expand as Taylor series at $t=0$. This should give
$$log(y)=(n-1) log (t)+log left(2^{-n-1}right)-frac{(n+2)}{12}
t^2+frac{(7 n+8) }{1440}t^4-frac{(31 n+32) }{90720}t^6+frac{(127 n+128)
}{4838400}t^8-frac{(511 n+512) }{239500800}t^{10}+Oleft(t^{12}right)$$ and continue with Taylor series using $y=e^{log(y)}$ and here start the complexity since we should arrive to something looking like
$$frac{y}{t^{n-1}}=2^{-(n+1)}+sum_{k=1}^p (-1)^k alpha_k,t^{2k} $$ with
$$alpha_1=frac{2^{-(n+3)}}{3} (n+2)$$
$$alpha_2=frac{2^{-(n+6)}}{45} (n+4) (5 n+7)$$
$$alpha_3=frac{2^{-(n+8)}}{2835} (n+6)(35 n^2+147 n+124)$$
$$alpha_4=frac{2^{-(n+12)}}{42525} (n+8)(175 n^3+1470 n^2+3509 n+2286)$$
$$alpha_5=frac{2^{-(n+14)}}{1403325} (n+10)(385 n^4+5390 n^3+24959 n^2+44242 n+24528)$$
Another possible approach would be to write
$$y=frac{1}{4} text{sech}^2left(frac{t}{2}right)tanh ^nleft(frac{t}{2}right)$$ and use
$$tanh left(frac{t}{2}right)=2sum_{k=1}^infty frac{ left(4^k-1right) B_{2 k} }{(2 k)!}t^{2 k-1}$$
$$text{sech}left(frac{t}{2}right)=sum_{k=0}^infty frac{ E_{2 k} }{4 ^k,(2 k)!}t^{2 k}$$ which give, for $y$, an expression that .... you just need to expand !
$endgroup$
add a comment |
$begingroup$
I think that writing the general term could be difficult.
For a truncated series, what I would do considering
$$y=frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}$$ is to take logarithms of both sides and expand as Taylor series at $t=0$. This should give
$$log(y)=(n-1) log (t)+log left(2^{-n-1}right)-frac{(n+2)}{12}
t^2+frac{(7 n+8) }{1440}t^4-frac{(31 n+32) }{90720}t^6+frac{(127 n+128)
}{4838400}t^8-frac{(511 n+512) }{239500800}t^{10}+Oleft(t^{12}right)$$ and continue with Taylor series using $y=e^{log(y)}$ and here start the complexity since we should arrive to something looking like
$$frac{y}{t^{n-1}}=2^{-(n+1)}+sum_{k=1}^p (-1)^k alpha_k,t^{2k} $$ with
$$alpha_1=frac{2^{-(n+3)}}{3} (n+2)$$
$$alpha_2=frac{2^{-(n+6)}}{45} (n+4) (5 n+7)$$
$$alpha_3=frac{2^{-(n+8)}}{2835} (n+6)(35 n^2+147 n+124)$$
$$alpha_4=frac{2^{-(n+12)}}{42525} (n+8)(175 n^3+1470 n^2+3509 n+2286)$$
$$alpha_5=frac{2^{-(n+14)}}{1403325} (n+10)(385 n^4+5390 n^3+24959 n^2+44242 n+24528)$$
Another possible approach would be to write
$$y=frac{1}{4} text{sech}^2left(frac{t}{2}right)tanh ^nleft(frac{t}{2}right)$$ and use
$$tanh left(frac{t}{2}right)=2sum_{k=1}^infty frac{ left(4^k-1right) B_{2 k} }{(2 k)!}t^{2 k-1}$$
$$text{sech}left(frac{t}{2}right)=sum_{k=0}^infty frac{ E_{2 k} }{4 ^k,(2 k)!}t^{2 k}$$ which give, for $y$, an expression that .... you just need to expand !
$endgroup$
add a comment |
$begingroup$
I think that writing the general term could be difficult.
For a truncated series, what I would do considering
$$y=frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}$$ is to take logarithms of both sides and expand as Taylor series at $t=0$. This should give
$$log(y)=(n-1) log (t)+log left(2^{-n-1}right)-frac{(n+2)}{12}
t^2+frac{(7 n+8) }{1440}t^4-frac{(31 n+32) }{90720}t^6+frac{(127 n+128)
}{4838400}t^8-frac{(511 n+512) }{239500800}t^{10}+Oleft(t^{12}right)$$ and continue with Taylor series using $y=e^{log(y)}$ and here start the complexity since we should arrive to something looking like
$$frac{y}{t^{n-1}}=2^{-(n+1)}+sum_{k=1}^p (-1)^k alpha_k,t^{2k} $$ with
$$alpha_1=frac{2^{-(n+3)}}{3} (n+2)$$
$$alpha_2=frac{2^{-(n+6)}}{45} (n+4) (5 n+7)$$
$$alpha_3=frac{2^{-(n+8)}}{2835} (n+6)(35 n^2+147 n+124)$$
$$alpha_4=frac{2^{-(n+12)}}{42525} (n+8)(175 n^3+1470 n^2+3509 n+2286)$$
$$alpha_5=frac{2^{-(n+14)}}{1403325} (n+10)(385 n^4+5390 n^3+24959 n^2+44242 n+24528)$$
Another possible approach would be to write
$$y=frac{1}{4} text{sech}^2left(frac{t}{2}right)tanh ^nleft(frac{t}{2}right)$$ and use
$$tanh left(frac{t}{2}right)=2sum_{k=1}^infty frac{ left(4^k-1right) B_{2 k} }{(2 k)!}t^{2 k-1}$$
$$text{sech}left(frac{t}{2}right)=sum_{k=0}^infty frac{ E_{2 k} }{4 ^k,(2 k)!}t^{2 k}$$ which give, for $y$, an expression that .... you just need to expand !
$endgroup$
I think that writing the general term could be difficult.
For a truncated series, what I would do considering
$$y=frac{e^t(e^t-1)^{n-1}}{(e^t+1)^{n+1}}$$ is to take logarithms of both sides and expand as Taylor series at $t=0$. This should give
$$log(y)=(n-1) log (t)+log left(2^{-n-1}right)-frac{(n+2)}{12}
t^2+frac{(7 n+8) }{1440}t^4-frac{(31 n+32) }{90720}t^6+frac{(127 n+128)
}{4838400}t^8-frac{(511 n+512) }{239500800}t^{10}+Oleft(t^{12}right)$$ and continue with Taylor series using $y=e^{log(y)}$ and here start the complexity since we should arrive to something looking like
$$frac{y}{t^{n-1}}=2^{-(n+1)}+sum_{k=1}^p (-1)^k alpha_k,t^{2k} $$ with
$$alpha_1=frac{2^{-(n+3)}}{3} (n+2)$$
$$alpha_2=frac{2^{-(n+6)}}{45} (n+4) (5 n+7)$$
$$alpha_3=frac{2^{-(n+8)}}{2835} (n+6)(35 n^2+147 n+124)$$
$$alpha_4=frac{2^{-(n+12)}}{42525} (n+8)(175 n^3+1470 n^2+3509 n+2286)$$
$$alpha_5=frac{2^{-(n+14)}}{1403325} (n+10)(385 n^4+5390 n^3+24959 n^2+44242 n+24528)$$
Another possible approach would be to write
$$y=frac{1}{4} text{sech}^2left(frac{t}{2}right)tanh ^nleft(frac{t}{2}right)$$ and use
$$tanh left(frac{t}{2}right)=2sum_{k=1}^infty frac{ left(4^k-1right) B_{2 k} }{(2 k)!}t^{2 k-1}$$
$$text{sech}left(frac{t}{2}right)=sum_{k=0}^infty frac{ E_{2 k} }{4 ^k,(2 k)!}t^{2 k}$$ which give, for $y$, an expression that .... you just need to expand !
answered Jan 15 at 6:57
Claude LeiboviciClaude Leibovici
126k1158134
126k1158134
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073903%2fhow-can-we-write-the-expansion-of-fracetet-1n-1et1n1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Suggestion: You can expand the numerator as $$sum_{j=0}^{n-1}{n-1choose j}(-1)^je^{(n-j)t}$$I am unsure on how to combine the sums however into a single summation
$endgroup$
– John Doe
Jan 14 at 23:55