Finding variable value
$begingroup$
$a$,$b$ and $c$ are real numbers each bigger than 1 such that
$$frac{2}{3}log_b{a} + frac{3}{5}log_c{b} + frac{5}{2}log_a{c} = 3$$
If the value of $b$ is 9 what must be the value of $a$?
I tried putting in the value of $b$ as 9 and then used the base change formula but couldn’t come up with a solution. Can someone help me out with the solution?
algebra-precalculus functions logarithms
$endgroup$
add a comment |
$begingroup$
$a$,$b$ and $c$ are real numbers each bigger than 1 such that
$$frac{2}{3}log_b{a} + frac{3}{5}log_c{b} + frac{5}{2}log_a{c} = 3$$
If the value of $b$ is 9 what must be the value of $a$?
I tried putting in the value of $b$ as 9 and then used the base change formula but couldn’t come up with a solution. Can someone help me out with the solution?
algebra-precalculus functions logarithms
$endgroup$
add a comment |
$begingroup$
$a$,$b$ and $c$ are real numbers each bigger than 1 such that
$$frac{2}{3}log_b{a} + frac{3}{5}log_c{b} + frac{5}{2}log_a{c} = 3$$
If the value of $b$ is 9 what must be the value of $a$?
I tried putting in the value of $b$ as 9 and then used the base change formula but couldn’t come up with a solution. Can someone help me out with the solution?
algebra-precalculus functions logarithms
$endgroup$
$a$,$b$ and $c$ are real numbers each bigger than 1 such that
$$frac{2}{3}log_b{a} + frac{3}{5}log_c{b} + frac{5}{2}log_a{c} = 3$$
If the value of $b$ is 9 what must be the value of $a$?
I tried putting in the value of $b$ as 9 and then used the base change formula but couldn’t come up with a solution. Can someone help me out with the solution?
algebra-precalculus functions logarithms
algebra-precalculus functions logarithms
edited Jan 15 at 6:48
gerw
20.1k11334
20.1k11334
asked Jan 14 at 23:20
user601297user601297
41719
41719
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$log_b a = frac {log a}{log b}$
$frac {2log a}{3log b} + frac {3log b}{5log c} + frac {5log c}{2log a} = 3$
let $alpha, beta, gamma = 2log a, 3log b, 5log c$ respectively
The AM-GM inequality.
$frac 13 (frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) ge (frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13$
$(frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13 = 1$
If
$(frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) = 3$
We can conclude:
$frac {alpha}{beta} = frac {beta}{gamma} = frac {gamma}{alpha} = 1$
$2log a = 3log b = 5log c\
a^2 = b^3 = c^5$
$b = 9 = 3^2\
a^2= b^3 = 3^6\
a = 3^3\
c = 3^{frac 65}$
$endgroup$
$begingroup$
Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
$endgroup$
– user601297
Jan 14 at 23:46
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073885%2ffinding-variable-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$log_b a = frac {log a}{log b}$
$frac {2log a}{3log b} + frac {3log b}{5log c} + frac {5log c}{2log a} = 3$
let $alpha, beta, gamma = 2log a, 3log b, 5log c$ respectively
The AM-GM inequality.
$frac 13 (frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) ge (frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13$
$(frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13 = 1$
If
$(frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) = 3$
We can conclude:
$frac {alpha}{beta} = frac {beta}{gamma} = frac {gamma}{alpha} = 1$
$2log a = 3log b = 5log c\
a^2 = b^3 = c^5$
$b = 9 = 3^2\
a^2= b^3 = 3^6\
a = 3^3\
c = 3^{frac 65}$
$endgroup$
$begingroup$
Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
$endgroup$
– user601297
Jan 14 at 23:46
add a comment |
$begingroup$
$log_b a = frac {log a}{log b}$
$frac {2log a}{3log b} + frac {3log b}{5log c} + frac {5log c}{2log a} = 3$
let $alpha, beta, gamma = 2log a, 3log b, 5log c$ respectively
The AM-GM inequality.
$frac 13 (frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) ge (frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13$
$(frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13 = 1$
If
$(frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) = 3$
We can conclude:
$frac {alpha}{beta} = frac {beta}{gamma} = frac {gamma}{alpha} = 1$
$2log a = 3log b = 5log c\
a^2 = b^3 = c^5$
$b = 9 = 3^2\
a^2= b^3 = 3^6\
a = 3^3\
c = 3^{frac 65}$
$endgroup$
$begingroup$
Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
$endgroup$
– user601297
Jan 14 at 23:46
add a comment |
$begingroup$
$log_b a = frac {log a}{log b}$
$frac {2log a}{3log b} + frac {3log b}{5log c} + frac {5log c}{2log a} = 3$
let $alpha, beta, gamma = 2log a, 3log b, 5log c$ respectively
The AM-GM inequality.
$frac 13 (frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) ge (frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13$
$(frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13 = 1$
If
$(frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) = 3$
We can conclude:
$frac {alpha}{beta} = frac {beta}{gamma} = frac {gamma}{alpha} = 1$
$2log a = 3log b = 5log c\
a^2 = b^3 = c^5$
$b = 9 = 3^2\
a^2= b^3 = 3^6\
a = 3^3\
c = 3^{frac 65}$
$endgroup$
$log_b a = frac {log a}{log b}$
$frac {2log a}{3log b} + frac {3log b}{5log c} + frac {5log c}{2log a} = 3$
let $alpha, beta, gamma = 2log a, 3log b, 5log c$ respectively
The AM-GM inequality.
$frac 13 (frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) ge (frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13$
$(frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13 = 1$
If
$(frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) = 3$
We can conclude:
$frac {alpha}{beta} = frac {beta}{gamma} = frac {gamma}{alpha} = 1$
$2log a = 3log b = 5log c\
a^2 = b^3 = c^5$
$b = 9 = 3^2\
a^2= b^3 = 3^6\
a = 3^3\
c = 3^{frac 65}$
answered Jan 14 at 23:42
Doug MDoug M
45.4k31954
45.4k31954
$begingroup$
Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
$endgroup$
– user601297
Jan 14 at 23:46
add a comment |
$begingroup$
Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
$endgroup$
– user601297
Jan 14 at 23:46
$begingroup$
Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
$endgroup$
– user601297
Jan 14 at 23:46
$begingroup$
Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
$endgroup$
– user601297
Jan 14 at 23:46
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073885%2ffinding-variable-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown