Finding variable value












0












$begingroup$


$a$,$b$ and $c$ are real numbers each bigger than 1 such that



$$frac{2}{3}log_b{a} + frac{3}{5}log_c{b} + frac{5}{2}log_a{c} = 3$$



If the value of $b$ is 9 what must be the value of $a$?



I tried putting in the value of $b$ as 9 and then used the base change formula but couldn’t come up with a solution. Can someone help me out with the solution?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    $a$,$b$ and $c$ are real numbers each bigger than 1 such that



    $$frac{2}{3}log_b{a} + frac{3}{5}log_c{b} + frac{5}{2}log_a{c} = 3$$



    If the value of $b$ is 9 what must be the value of $a$?



    I tried putting in the value of $b$ as 9 and then used the base change formula but couldn’t come up with a solution. Can someone help me out with the solution?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      $a$,$b$ and $c$ are real numbers each bigger than 1 such that



      $$frac{2}{3}log_b{a} + frac{3}{5}log_c{b} + frac{5}{2}log_a{c} = 3$$



      If the value of $b$ is 9 what must be the value of $a$?



      I tried putting in the value of $b$ as 9 and then used the base change formula but couldn’t come up with a solution. Can someone help me out with the solution?










      share|cite|improve this question











      $endgroup$




      $a$,$b$ and $c$ are real numbers each bigger than 1 such that



      $$frac{2}{3}log_b{a} + frac{3}{5}log_c{b} + frac{5}{2}log_a{c} = 3$$



      If the value of $b$ is 9 what must be the value of $a$?



      I tried putting in the value of $b$ as 9 and then used the base change formula but couldn’t come up with a solution. Can someone help me out with the solution?







      algebra-precalculus functions logarithms






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 15 at 6:48









      gerw

      20.1k11334




      20.1k11334










      asked Jan 14 at 23:20









      user601297user601297

      41719




      41719






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          $log_b a = frac {log a}{log b}$



          $frac {2log a}{3log b} + frac {3log b}{5log c} + frac {5log c}{2log a} = 3$



          let $alpha, beta, gamma = 2log a, 3log b, 5log c$ respectively



          The AM-GM inequality.



          $frac 13 (frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) ge (frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13$



          $(frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13 = 1$



          If
          $(frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) = 3$



          We can conclude:



          $frac {alpha}{beta} = frac {beta}{gamma} = frac {gamma}{alpha} = 1$



          $2log a = 3log b = 5log c\
          a^2 = b^3 = c^5$



          $b = 9 = 3^2\
          a^2= b^3 = 3^6\
          a = 3^3\
          c = 3^{frac 65}$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
            $endgroup$
            – user601297
            Jan 14 at 23:46












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073885%2ffinding-variable-value%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          $log_b a = frac {log a}{log b}$



          $frac {2log a}{3log b} + frac {3log b}{5log c} + frac {5log c}{2log a} = 3$



          let $alpha, beta, gamma = 2log a, 3log b, 5log c$ respectively



          The AM-GM inequality.



          $frac 13 (frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) ge (frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13$



          $(frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13 = 1$



          If
          $(frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) = 3$



          We can conclude:



          $frac {alpha}{beta} = frac {beta}{gamma} = frac {gamma}{alpha} = 1$



          $2log a = 3log b = 5log c\
          a^2 = b^3 = c^5$



          $b = 9 = 3^2\
          a^2= b^3 = 3^6\
          a = 3^3\
          c = 3^{frac 65}$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
            $endgroup$
            – user601297
            Jan 14 at 23:46
















          0












          $begingroup$

          $log_b a = frac {log a}{log b}$



          $frac {2log a}{3log b} + frac {3log b}{5log c} + frac {5log c}{2log a} = 3$



          let $alpha, beta, gamma = 2log a, 3log b, 5log c$ respectively



          The AM-GM inequality.



          $frac 13 (frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) ge (frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13$



          $(frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13 = 1$



          If
          $(frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) = 3$



          We can conclude:



          $frac {alpha}{beta} = frac {beta}{gamma} = frac {gamma}{alpha} = 1$



          $2log a = 3log b = 5log c\
          a^2 = b^3 = c^5$



          $b = 9 = 3^2\
          a^2= b^3 = 3^6\
          a = 3^3\
          c = 3^{frac 65}$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
            $endgroup$
            – user601297
            Jan 14 at 23:46














          0












          0








          0





          $begingroup$

          $log_b a = frac {log a}{log b}$



          $frac {2log a}{3log b} + frac {3log b}{5log c} + frac {5log c}{2log a} = 3$



          let $alpha, beta, gamma = 2log a, 3log b, 5log c$ respectively



          The AM-GM inequality.



          $frac 13 (frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) ge (frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13$



          $(frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13 = 1$



          If
          $(frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) = 3$



          We can conclude:



          $frac {alpha}{beta} = frac {beta}{gamma} = frac {gamma}{alpha} = 1$



          $2log a = 3log b = 5log c\
          a^2 = b^3 = c^5$



          $b = 9 = 3^2\
          a^2= b^3 = 3^6\
          a = 3^3\
          c = 3^{frac 65}$






          share|cite|improve this answer









          $endgroup$



          $log_b a = frac {log a}{log b}$



          $frac {2log a}{3log b} + frac {3log b}{5log c} + frac {5log c}{2log a} = 3$



          let $alpha, beta, gamma = 2log a, 3log b, 5log c$ respectively



          The AM-GM inequality.



          $frac 13 (frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) ge (frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13$



          $(frac {alpha}{beta} frac {beta}{gamma} frac {gamma}{alpha})^frac 13 = 1$



          If
          $(frac {alpha}{beta} + frac {beta}{gamma} + frac {gamma}{alpha}) = 3$



          We can conclude:



          $frac {alpha}{beta} = frac {beta}{gamma} = frac {gamma}{alpha} = 1$



          $2log a = 3log b = 5log c\
          a^2 = b^3 = c^5$



          $b = 9 = 3^2\
          a^2= b^3 = 3^6\
          a = 3^3\
          c = 3^{frac 65}$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 14 at 23:42









          Doug MDoug M

          45.4k31954




          45.4k31954












          • $begingroup$
            Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
            $endgroup$
            – user601297
            Jan 14 at 23:46


















          • $begingroup$
            Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
            $endgroup$
            – user601297
            Jan 14 at 23:46
















          $begingroup$
          Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
          $endgroup$
          – user601297
          Jan 14 at 23:46




          $begingroup$
          Amazing solution, how did it strike you to use the A.M. G.M. Inequality? Thanks a lot
          $endgroup$
          – user601297
          Jan 14 at 23:46


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073885%2ffinding-variable-value%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna