derivative with quotient rule and summations












1












$begingroup$


I want to differentiate this with respect to $eta$:



$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}$$



Does this solution look correct? I tried going through with the quotient rule, but it is a bit messy, so I was hoping someone could check my math



$$C'(eta) = frac{left[3left(1-frac{eta}{eta_c}right)sumlimits_{k=1}^{3} B_kkleft(frac{eta}{eta_c}right)^{k-1}frac{1}{eta_c}right]-left[left(1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^kright)left(-frac{3}{eta_c}right)right]}{left[3left(1-frac{eta}{eta_c}right)right]^2}$$










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Yes, that's correct.
    $endgroup$
    – Ryan Greyling
    Jan 14 at 23:09
















1












$begingroup$


I want to differentiate this with respect to $eta$:



$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}$$



Does this solution look correct? I tried going through with the quotient rule, but it is a bit messy, so I was hoping someone could check my math



$$C'(eta) = frac{left[3left(1-frac{eta}{eta_c}right)sumlimits_{k=1}^{3} B_kkleft(frac{eta}{eta_c}right)^{k-1}frac{1}{eta_c}right]-left[left(1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^kright)left(-frac{3}{eta_c}right)right]}{left[3left(1-frac{eta}{eta_c}right)right]^2}$$










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Yes, that's correct.
    $endgroup$
    – Ryan Greyling
    Jan 14 at 23:09














1












1








1


0



$begingroup$


I want to differentiate this with respect to $eta$:



$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}$$



Does this solution look correct? I tried going through with the quotient rule, but it is a bit messy, so I was hoping someone could check my math



$$C'(eta) = frac{left[3left(1-frac{eta}{eta_c}right)sumlimits_{k=1}^{3} B_kkleft(frac{eta}{eta_c}right)^{k-1}frac{1}{eta_c}right]-left[left(1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^kright)left(-frac{3}{eta_c}right)right]}{left[3left(1-frac{eta}{eta_c}right)right]^2}$$










share|cite|improve this question









$endgroup$




I want to differentiate this with respect to $eta$:



$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}$$



Does this solution look correct? I tried going through with the quotient rule, but it is a bit messy, so I was hoping someone could check my math



$$C'(eta) = frac{left[3left(1-frac{eta}{eta_c}right)sumlimits_{k=1}^{3} B_kkleft(frac{eta}{eta_c}right)^{k-1}frac{1}{eta_c}right]-left[left(1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^kright)left(-frac{3}{eta_c}right)right]}{left[3left(1-frac{eta}{eta_c}right)right]^2}$$







derivatives partial-derivative






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 14 at 22:57









Jackson HartJackson Hart

5452726




5452726








  • 2




    $begingroup$
    Yes, that's correct.
    $endgroup$
    – Ryan Greyling
    Jan 14 at 23:09














  • 2




    $begingroup$
    Yes, that's correct.
    $endgroup$
    – Ryan Greyling
    Jan 14 at 23:09








2




2




$begingroup$
Yes, that's correct.
$endgroup$
– Ryan Greyling
Jan 14 at 23:09




$begingroup$
Yes, that's correct.
$endgroup$
– Ryan Greyling
Jan 14 at 23:09










2 Answers
2






active

oldest

votes


















0












$begingroup$

You could have made life a bit simpler writing
$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kx^k}{3left(1-xright)}qquad text{where}qquad x=frac{eta}{eta_c}$$ and use
$$frac{dC(eta)}{deta} = frac{d C(eta)}{dx}frac{dx}{deta}=frac{1}{eta_c}frac{d C(eta)}{dx}$$ For sure, your result is correct but, since $k$ has only a few values, you could simplity the final result to get
$$C'(eta)=frac{1}{eta_c}frac{1+B_1+2 B_2 x+(3 B_3-B_2) x^2-2 B_3 x^3 }{3(1-x)^2}$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Here's how you could differentiate this particular function:



    $$
    C'(eta) = left[frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}right]'=
    left[frac{1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}right]'=\
    left[left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left[3left(1-frac{eta}{eta_c}right)right]^{-1}right]'=\
    left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)'left[3left(1-frac{eta}{eta_c}right)right]^{-1}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left(left[3left(1-frac{eta}{eta_c}right)right]^{-1}right)'=\
    frac{B_{1}frac{1}{eta_c}+B_{2}frac{2eta}{eta_c^2}+B_{3}frac{3eta^2}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)(-1)left[3left(1-frac{eta}{eta_c}right)right]^{-2}left(3-3frac{eta}{eta_c}right)'=\
    frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{left[3left(1-frac{eta}{eta_c}right)right]^2}cdotfrac{3}{eta_c}=\
    frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3eta_cleft(1-frac{eta}{eta_c}right)^2}.
    $$



    The answer I get appears to be equivalent to what you got.






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073867%2fderivative-with-quotient-rule-and-summations%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      You could have made life a bit simpler writing
      $$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kx^k}{3left(1-xright)}qquad text{where}qquad x=frac{eta}{eta_c}$$ and use
      $$frac{dC(eta)}{deta} = frac{d C(eta)}{dx}frac{dx}{deta}=frac{1}{eta_c}frac{d C(eta)}{dx}$$ For sure, your result is correct but, since $k$ has only a few values, you could simplity the final result to get
      $$C'(eta)=frac{1}{eta_c}frac{1+B_1+2 B_2 x+(3 B_3-B_2) x^2-2 B_3 x^3 }{3(1-x)^2}$$






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        You could have made life a bit simpler writing
        $$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kx^k}{3left(1-xright)}qquad text{where}qquad x=frac{eta}{eta_c}$$ and use
        $$frac{dC(eta)}{deta} = frac{d C(eta)}{dx}frac{dx}{deta}=frac{1}{eta_c}frac{d C(eta)}{dx}$$ For sure, your result is correct but, since $k$ has only a few values, you could simplity the final result to get
        $$C'(eta)=frac{1}{eta_c}frac{1+B_1+2 B_2 x+(3 B_3-B_2) x^2-2 B_3 x^3 }{3(1-x)^2}$$






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          You could have made life a bit simpler writing
          $$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kx^k}{3left(1-xright)}qquad text{where}qquad x=frac{eta}{eta_c}$$ and use
          $$frac{dC(eta)}{deta} = frac{d C(eta)}{dx}frac{dx}{deta}=frac{1}{eta_c}frac{d C(eta)}{dx}$$ For sure, your result is correct but, since $k$ has only a few values, you could simplity the final result to get
          $$C'(eta)=frac{1}{eta_c}frac{1+B_1+2 B_2 x+(3 B_3-B_2) x^2-2 B_3 x^3 }{3(1-x)^2}$$






          share|cite|improve this answer









          $endgroup$



          You could have made life a bit simpler writing
          $$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kx^k}{3left(1-xright)}qquad text{where}qquad x=frac{eta}{eta_c}$$ and use
          $$frac{dC(eta)}{deta} = frac{d C(eta)}{dx}frac{dx}{deta}=frac{1}{eta_c}frac{d C(eta)}{dx}$$ For sure, your result is correct but, since $k$ has only a few values, you could simplity the final result to get
          $$C'(eta)=frac{1}{eta_c}frac{1+B_1+2 B_2 x+(3 B_3-B_2) x^2-2 B_3 x^3 }{3(1-x)^2}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 15 at 8:01









          Claude LeiboviciClaude Leibovici

          126k1158134




          126k1158134























              0












              $begingroup$

              Here's how you could differentiate this particular function:



              $$
              C'(eta) = left[frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}right]'=
              left[frac{1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}right]'=\
              left[left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left[3left(1-frac{eta}{eta_c}right)right]^{-1}right]'=\
              left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)'left[3left(1-frac{eta}{eta_c}right)right]^{-1}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left(left[3left(1-frac{eta}{eta_c}right)right]^{-1}right)'=\
              frac{B_{1}frac{1}{eta_c}+B_{2}frac{2eta}{eta_c^2}+B_{3}frac{3eta^2}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)(-1)left[3left(1-frac{eta}{eta_c}right)right]^{-2}left(3-3frac{eta}{eta_c}right)'=\
              frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{left[3left(1-frac{eta}{eta_c}right)right]^2}cdotfrac{3}{eta_c}=\
              frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3eta_cleft(1-frac{eta}{eta_c}right)^2}.
              $$



              The answer I get appears to be equivalent to what you got.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Here's how you could differentiate this particular function:



                $$
                C'(eta) = left[frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}right]'=
                left[frac{1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}right]'=\
                left[left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left[3left(1-frac{eta}{eta_c}right)right]^{-1}right]'=\
                left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)'left[3left(1-frac{eta}{eta_c}right)right]^{-1}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left(left[3left(1-frac{eta}{eta_c}right)right]^{-1}right)'=\
                frac{B_{1}frac{1}{eta_c}+B_{2}frac{2eta}{eta_c^2}+B_{3}frac{3eta^2}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)(-1)left[3left(1-frac{eta}{eta_c}right)right]^{-2}left(3-3frac{eta}{eta_c}right)'=\
                frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{left[3left(1-frac{eta}{eta_c}right)right]^2}cdotfrac{3}{eta_c}=\
                frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3eta_cleft(1-frac{eta}{eta_c}right)^2}.
                $$



                The answer I get appears to be equivalent to what you got.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Here's how you could differentiate this particular function:



                  $$
                  C'(eta) = left[frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}right]'=
                  left[frac{1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}right]'=\
                  left[left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left[3left(1-frac{eta}{eta_c}right)right]^{-1}right]'=\
                  left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)'left[3left(1-frac{eta}{eta_c}right)right]^{-1}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left(left[3left(1-frac{eta}{eta_c}right)right]^{-1}right)'=\
                  frac{B_{1}frac{1}{eta_c}+B_{2}frac{2eta}{eta_c^2}+B_{3}frac{3eta^2}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)(-1)left[3left(1-frac{eta}{eta_c}right)right]^{-2}left(3-3frac{eta}{eta_c}right)'=\
                  frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{left[3left(1-frac{eta}{eta_c}right)right]^2}cdotfrac{3}{eta_c}=\
                  frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3eta_cleft(1-frac{eta}{eta_c}right)^2}.
                  $$



                  The answer I get appears to be equivalent to what you got.






                  share|cite|improve this answer









                  $endgroup$



                  Here's how you could differentiate this particular function:



                  $$
                  C'(eta) = left[frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}right]'=
                  left[frac{1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}right]'=\
                  left[left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left[3left(1-frac{eta}{eta_c}right)right]^{-1}right]'=\
                  left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)'left[3left(1-frac{eta}{eta_c}right)right]^{-1}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left(left[3left(1-frac{eta}{eta_c}right)right]^{-1}right)'=\
                  frac{B_{1}frac{1}{eta_c}+B_{2}frac{2eta}{eta_c^2}+B_{3}frac{3eta^2}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)(-1)left[3left(1-frac{eta}{eta_c}right)right]^{-2}left(3-3frac{eta}{eta_c}right)'=\
                  frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{left[3left(1-frac{eta}{eta_c}right)right]^2}cdotfrac{3}{eta_c}=\
                  frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3eta_cleft(1-frac{eta}{eta_c}right)^2}.
                  $$



                  The answer I get appears to be equivalent to what you got.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 29 at 19:08









                  Michael RybkinMichael Rybkin

                  4,544522




                  4,544522






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073867%2fderivative-with-quotient-rule-and-summations%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna