derivative with quotient rule and summations
$begingroup$
I want to differentiate this with respect to $eta$:
$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}$$
Does this solution look correct? I tried going through with the quotient rule, but it is a bit messy, so I was hoping someone could check my math
$$C'(eta) = frac{left[3left(1-frac{eta}{eta_c}right)sumlimits_{k=1}^{3} B_kkleft(frac{eta}{eta_c}right)^{k-1}frac{1}{eta_c}right]-left[left(1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^kright)left(-frac{3}{eta_c}right)right]}{left[3left(1-frac{eta}{eta_c}right)right]^2}$$
derivatives partial-derivative
$endgroup$
add a comment |
$begingroup$
I want to differentiate this with respect to $eta$:
$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}$$
Does this solution look correct? I tried going through with the quotient rule, but it is a bit messy, so I was hoping someone could check my math
$$C'(eta) = frac{left[3left(1-frac{eta}{eta_c}right)sumlimits_{k=1}^{3} B_kkleft(frac{eta}{eta_c}right)^{k-1}frac{1}{eta_c}right]-left[left(1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^kright)left(-frac{3}{eta_c}right)right]}{left[3left(1-frac{eta}{eta_c}right)right]^2}$$
derivatives partial-derivative
$endgroup$
2
$begingroup$
Yes, that's correct.
$endgroup$
– Ryan Greyling
Jan 14 at 23:09
add a comment |
$begingroup$
I want to differentiate this with respect to $eta$:
$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}$$
Does this solution look correct? I tried going through with the quotient rule, but it is a bit messy, so I was hoping someone could check my math
$$C'(eta) = frac{left[3left(1-frac{eta}{eta_c}right)sumlimits_{k=1}^{3} B_kkleft(frac{eta}{eta_c}right)^{k-1}frac{1}{eta_c}right]-left[left(1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^kright)left(-frac{3}{eta_c}right)right]}{left[3left(1-frac{eta}{eta_c}right)right]^2}$$
derivatives partial-derivative
$endgroup$
I want to differentiate this with respect to $eta$:
$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}$$
Does this solution look correct? I tried going through with the quotient rule, but it is a bit messy, so I was hoping someone could check my math
$$C'(eta) = frac{left[3left(1-frac{eta}{eta_c}right)sumlimits_{k=1}^{3} B_kkleft(frac{eta}{eta_c}right)^{k-1}frac{1}{eta_c}right]-left[left(1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^kright)left(-frac{3}{eta_c}right)right]}{left[3left(1-frac{eta}{eta_c}right)right]^2}$$
derivatives partial-derivative
derivatives partial-derivative
asked Jan 14 at 22:57
Jackson HartJackson Hart
5452726
5452726
2
$begingroup$
Yes, that's correct.
$endgroup$
– Ryan Greyling
Jan 14 at 23:09
add a comment |
2
$begingroup$
Yes, that's correct.
$endgroup$
– Ryan Greyling
Jan 14 at 23:09
2
2
$begingroup$
Yes, that's correct.
$endgroup$
– Ryan Greyling
Jan 14 at 23:09
$begingroup$
Yes, that's correct.
$endgroup$
– Ryan Greyling
Jan 14 at 23:09
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You could have made life a bit simpler writing
$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kx^k}{3left(1-xright)}qquad text{where}qquad x=frac{eta}{eta_c}$$ and use
$$frac{dC(eta)}{deta} = frac{d C(eta)}{dx}frac{dx}{deta}=frac{1}{eta_c}frac{d C(eta)}{dx}$$ For sure, your result is correct but, since $k$ has only a few values, you could simplity the final result to get
$$C'(eta)=frac{1}{eta_c}frac{1+B_1+2 B_2 x+(3 B_3-B_2) x^2-2 B_3 x^3 }{3(1-x)^2}$$
$endgroup$
add a comment |
$begingroup$
Here's how you could differentiate this particular function:
$$
C'(eta) = left[frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}right]'=
left[frac{1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}right]'=\
left[left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left[3left(1-frac{eta}{eta_c}right)right]^{-1}right]'=\
left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)'left[3left(1-frac{eta}{eta_c}right)right]^{-1}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left(left[3left(1-frac{eta}{eta_c}right)right]^{-1}right)'=\
frac{B_{1}frac{1}{eta_c}+B_{2}frac{2eta}{eta_c^2}+B_{3}frac{3eta^2}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)(-1)left[3left(1-frac{eta}{eta_c}right)right]^{-2}left(3-3frac{eta}{eta_c}right)'=\
frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{left[3left(1-frac{eta}{eta_c}right)right]^2}cdotfrac{3}{eta_c}=\
frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3eta_cleft(1-frac{eta}{eta_c}right)^2}.
$$
The answer I get appears to be equivalent to what you got.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073867%2fderivative-with-quotient-rule-and-summations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You could have made life a bit simpler writing
$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kx^k}{3left(1-xright)}qquad text{where}qquad x=frac{eta}{eta_c}$$ and use
$$frac{dC(eta)}{deta} = frac{d C(eta)}{dx}frac{dx}{deta}=frac{1}{eta_c}frac{d C(eta)}{dx}$$ For sure, your result is correct but, since $k$ has only a few values, you could simplity the final result to get
$$C'(eta)=frac{1}{eta_c}frac{1+B_1+2 B_2 x+(3 B_3-B_2) x^2-2 B_3 x^3 }{3(1-x)^2}$$
$endgroup$
add a comment |
$begingroup$
You could have made life a bit simpler writing
$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kx^k}{3left(1-xright)}qquad text{where}qquad x=frac{eta}{eta_c}$$ and use
$$frac{dC(eta)}{deta} = frac{d C(eta)}{dx}frac{dx}{deta}=frac{1}{eta_c}frac{d C(eta)}{dx}$$ For sure, your result is correct but, since $k$ has only a few values, you could simplity the final result to get
$$C'(eta)=frac{1}{eta_c}frac{1+B_1+2 B_2 x+(3 B_3-B_2) x^2-2 B_3 x^3 }{3(1-x)^2}$$
$endgroup$
add a comment |
$begingroup$
You could have made life a bit simpler writing
$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kx^k}{3left(1-xright)}qquad text{where}qquad x=frac{eta}{eta_c}$$ and use
$$frac{dC(eta)}{deta} = frac{d C(eta)}{dx}frac{dx}{deta}=frac{1}{eta_c}frac{d C(eta)}{dx}$$ For sure, your result is correct but, since $k$ has only a few values, you could simplity the final result to get
$$C'(eta)=frac{1}{eta_c}frac{1+B_1+2 B_2 x+(3 B_3-B_2) x^2-2 B_3 x^3 }{3(1-x)^2}$$
$endgroup$
You could have made life a bit simpler writing
$$C(eta) = frac{1+sumlimits_{k=1}^{3} B_kx^k}{3left(1-xright)}qquad text{where}qquad x=frac{eta}{eta_c}$$ and use
$$frac{dC(eta)}{deta} = frac{d C(eta)}{dx}frac{dx}{deta}=frac{1}{eta_c}frac{d C(eta)}{dx}$$ For sure, your result is correct but, since $k$ has only a few values, you could simplity the final result to get
$$C'(eta)=frac{1}{eta_c}frac{1+B_1+2 B_2 x+(3 B_3-B_2) x^2-2 B_3 x^3 }{3(1-x)^2}$$
answered Jan 15 at 8:01
Claude LeiboviciClaude Leibovici
126k1158134
126k1158134
add a comment |
add a comment |
$begingroup$
Here's how you could differentiate this particular function:
$$
C'(eta) = left[frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}right]'=
left[frac{1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}right]'=\
left[left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left[3left(1-frac{eta}{eta_c}right)right]^{-1}right]'=\
left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)'left[3left(1-frac{eta}{eta_c}right)right]^{-1}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left(left[3left(1-frac{eta}{eta_c}right)right]^{-1}right)'=\
frac{B_{1}frac{1}{eta_c}+B_{2}frac{2eta}{eta_c^2}+B_{3}frac{3eta^2}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)(-1)left[3left(1-frac{eta}{eta_c}right)right]^{-2}left(3-3frac{eta}{eta_c}right)'=\
frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{left[3left(1-frac{eta}{eta_c}right)right]^2}cdotfrac{3}{eta_c}=\
frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3eta_cleft(1-frac{eta}{eta_c}right)^2}.
$$
The answer I get appears to be equivalent to what you got.
$endgroup$
add a comment |
$begingroup$
Here's how you could differentiate this particular function:
$$
C'(eta) = left[frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}right]'=
left[frac{1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}right]'=\
left[left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left[3left(1-frac{eta}{eta_c}right)right]^{-1}right]'=\
left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)'left[3left(1-frac{eta}{eta_c}right)right]^{-1}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left(left[3left(1-frac{eta}{eta_c}right)right]^{-1}right)'=\
frac{B_{1}frac{1}{eta_c}+B_{2}frac{2eta}{eta_c^2}+B_{3}frac{3eta^2}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)(-1)left[3left(1-frac{eta}{eta_c}right)right]^{-2}left(3-3frac{eta}{eta_c}right)'=\
frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{left[3left(1-frac{eta}{eta_c}right)right]^2}cdotfrac{3}{eta_c}=\
frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3eta_cleft(1-frac{eta}{eta_c}right)^2}.
$$
The answer I get appears to be equivalent to what you got.
$endgroup$
add a comment |
$begingroup$
Here's how you could differentiate this particular function:
$$
C'(eta) = left[frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}right]'=
left[frac{1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}right]'=\
left[left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left[3left(1-frac{eta}{eta_c}right)right]^{-1}right]'=\
left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)'left[3left(1-frac{eta}{eta_c}right)right]^{-1}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left(left[3left(1-frac{eta}{eta_c}right)right]^{-1}right)'=\
frac{B_{1}frac{1}{eta_c}+B_{2}frac{2eta}{eta_c^2}+B_{3}frac{3eta^2}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)(-1)left[3left(1-frac{eta}{eta_c}right)right]^{-2}left(3-3frac{eta}{eta_c}right)'=\
frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{left[3left(1-frac{eta}{eta_c}right)right]^2}cdotfrac{3}{eta_c}=\
frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3eta_cleft(1-frac{eta}{eta_c}right)^2}.
$$
The answer I get appears to be equivalent to what you got.
$endgroup$
Here's how you could differentiate this particular function:
$$
C'(eta) = left[frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3left(1-frac{eta}{eta_c}right)}right]'=
left[frac{1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}right]'=\
left[left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left[3left(1-frac{eta}{eta_c}right)right]^{-1}right]'=\
left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)'left[3left(1-frac{eta}{eta_c}right)right]^{-1}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)left(left[3left(1-frac{eta}{eta_c}right)right]^{-1}right)'=\
frac{B_{1}frac{1}{eta_c}+B_{2}frac{2eta}{eta_c^2}+B_{3}frac{3eta^2}{eta_c^3}}{3left(1-frac{eta}{eta_c}right)}+left(1+B_{1}frac{eta}{eta_c}+B_{2}frac{eta^2}{eta_c^2}+B_{3}frac{eta^3}{eta_c^3}right)(-1)left[3left(1-frac{eta}{eta_c}right)right]^{-2}left(3-3frac{eta}{eta_c}right)'=\
frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{left[3left(1-frac{eta}{eta_c}right)right]^2}cdotfrac{3}{eta_c}=\
frac{sumlimits_{k=1}^{3}B_kfrac{keta^{k-1}}{eta_c^k}}{3left(1-frac{eta}{eta_c}right)}+frac{1+sumlimits_{k=1}^{3} B_kleft(frac{eta}{eta_c}right)^k}{3eta_cleft(1-frac{eta}{eta_c}right)^2}.
$$
The answer I get appears to be equivalent to what you got.
answered Jan 29 at 19:08
Michael RybkinMichael Rybkin
4,544522
4,544522
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073867%2fderivative-with-quotient-rule-and-summations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Yes, that's correct.
$endgroup$
– Ryan Greyling
Jan 14 at 23:09