For which positive real numbers $a$ does $sum_{n=1}^infty a^{log n}$ converge?
$begingroup$
I know the answer is $a<1$. I tried the ratio test which was inconclusive, and also the root test which did not work. Any tips on how to proceed?
Any help would be appreciated, thank you
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
I know the answer is $a<1$. I tried the ratio test which was inconclusive, and also the root test which did not work. Any tips on how to proceed?
Any help would be appreciated, thank you
sequences-and-series convergence
$endgroup$
$begingroup$
Hint: $a^{log n}=e^{log acdotlog n}=dots$
$endgroup$
– Wojowu
Jan 14 at 23:03
$begingroup$
The answer $a<1$ is actually wrong. The correct one is $a<1/e$.
$endgroup$
– Wojowu
Jan 14 at 23:08
add a comment |
$begingroup$
I know the answer is $a<1$. I tried the ratio test which was inconclusive, and also the root test which did not work. Any tips on how to proceed?
Any help would be appreciated, thank you
sequences-and-series convergence
$endgroup$
I know the answer is $a<1$. I tried the ratio test which was inconclusive, and also the root test which did not work. Any tips on how to proceed?
Any help would be appreciated, thank you
sequences-and-series convergence
sequences-and-series convergence
edited Jan 14 at 23:00
Math1000
19.4k31746
19.4k31746
asked Jan 14 at 22:52
user101user101
304
304
$begingroup$
Hint: $a^{log n}=e^{log acdotlog n}=dots$
$endgroup$
– Wojowu
Jan 14 at 23:03
$begingroup$
The answer $a<1$ is actually wrong. The correct one is $a<1/e$.
$endgroup$
– Wojowu
Jan 14 at 23:08
add a comment |
$begingroup$
Hint: $a^{log n}=e^{log acdotlog n}=dots$
$endgroup$
– Wojowu
Jan 14 at 23:03
$begingroup$
The answer $a<1$ is actually wrong. The correct one is $a<1/e$.
$endgroup$
– Wojowu
Jan 14 at 23:08
$begingroup$
Hint: $a^{log n}=e^{log acdotlog n}=dots$
$endgroup$
– Wojowu
Jan 14 at 23:03
$begingroup$
Hint: $a^{log n}=e^{log acdotlog n}=dots$
$endgroup$
– Wojowu
Jan 14 at 23:03
$begingroup$
The answer $a<1$ is actually wrong. The correct one is $a<1/e$.
$endgroup$
– Wojowu
Jan 14 at 23:08
$begingroup$
The answer $a<1$ is actually wrong. The correct one is $a<1/e$.
$endgroup$
– Wojowu
Jan 14 at 23:08
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Notice that
$$ a^{log n} = exp( log a log n) = n^{log a } $$
Notice that $log a > 0$ iff $a > 1 $. Thus $sum a^{log n }$ diverges if $a geq 1$ and converges when $ log a < -1 $ or when $ a < 1/e $
$endgroup$
$begingroup$
Series $n^c$ converges for $c<-1$, not $c<0$.
$endgroup$
– Wojowu
Jan 14 at 23:09
$begingroup$
fixed it now...
$endgroup$
– James
Jan 14 at 23:14
add a comment |
$begingroup$
Note that
$$begin{eqnarray}
sum_{n=2^k}^{2^{k+1}-1} a^{log n}&ge&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k}\&ge&2^kcdot (a^{log 2})^k\&=& (2cdot a^{log 2})^k,
end{eqnarray}$$and
$$begin{eqnarray}
sum_{n=2^k}^{2^{k+1}-1} a^{log n}&le&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k+1}\&=&2^kcdot( a^{log2})^{k+1}\&le& (2cdot a^{log2})^{k+1}
end{eqnarray}$$ for all $kge 0$. This shows
$$
lim_{Ntoinfty}sum_{n=1}^N a^{log n}=lim_{Ktoinfty}sum_{k=0}^K sum_{n=2^k}^{2^{k+1}-1} a^{log n}
$$ converges if and only if $sum_{k=0}^infty (2cdot a^{log 2})^k$ converges (by comparison test). This gives the condition
$
2cdot a^{log 2}<1,
$ or equivalently
$
2^{1+log a}<2^0=1.
$ Hence it is sufficient and necessary that $$log a<-1Leftrightarrow 0< a<frac{1}{e}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073864%2ffor-which-positive-real-numbers-a-does-sum-n-1-infty-a-log-n-converge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Notice that
$$ a^{log n} = exp( log a log n) = n^{log a } $$
Notice that $log a > 0$ iff $a > 1 $. Thus $sum a^{log n }$ diverges if $a geq 1$ and converges when $ log a < -1 $ or when $ a < 1/e $
$endgroup$
$begingroup$
Series $n^c$ converges for $c<-1$, not $c<0$.
$endgroup$
– Wojowu
Jan 14 at 23:09
$begingroup$
fixed it now...
$endgroup$
– James
Jan 14 at 23:14
add a comment |
$begingroup$
Notice that
$$ a^{log n} = exp( log a log n) = n^{log a } $$
Notice that $log a > 0$ iff $a > 1 $. Thus $sum a^{log n }$ diverges if $a geq 1$ and converges when $ log a < -1 $ or when $ a < 1/e $
$endgroup$
$begingroup$
Series $n^c$ converges for $c<-1$, not $c<0$.
$endgroup$
– Wojowu
Jan 14 at 23:09
$begingroup$
fixed it now...
$endgroup$
– James
Jan 14 at 23:14
add a comment |
$begingroup$
Notice that
$$ a^{log n} = exp( log a log n) = n^{log a } $$
Notice that $log a > 0$ iff $a > 1 $. Thus $sum a^{log n }$ diverges if $a geq 1$ and converges when $ log a < -1 $ or when $ a < 1/e $
$endgroup$
Notice that
$$ a^{log n} = exp( log a log n) = n^{log a } $$
Notice that $log a > 0$ iff $a > 1 $. Thus $sum a^{log n }$ diverges if $a geq 1$ and converges when $ log a < -1 $ or when $ a < 1/e $
edited Jan 14 at 23:14
answered Jan 14 at 23:05
JamesJames
2,636425
2,636425
$begingroup$
Series $n^c$ converges for $c<-1$, not $c<0$.
$endgroup$
– Wojowu
Jan 14 at 23:09
$begingroup$
fixed it now...
$endgroup$
– James
Jan 14 at 23:14
add a comment |
$begingroup$
Series $n^c$ converges for $c<-1$, not $c<0$.
$endgroup$
– Wojowu
Jan 14 at 23:09
$begingroup$
fixed it now...
$endgroup$
– James
Jan 14 at 23:14
$begingroup$
Series $n^c$ converges for $c<-1$, not $c<0$.
$endgroup$
– Wojowu
Jan 14 at 23:09
$begingroup$
Series $n^c$ converges for $c<-1$, not $c<0$.
$endgroup$
– Wojowu
Jan 14 at 23:09
$begingroup$
fixed it now...
$endgroup$
– James
Jan 14 at 23:14
$begingroup$
fixed it now...
$endgroup$
– James
Jan 14 at 23:14
add a comment |
$begingroup$
Note that
$$begin{eqnarray}
sum_{n=2^k}^{2^{k+1}-1} a^{log n}&ge&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k}\&ge&2^kcdot (a^{log 2})^k\&=& (2cdot a^{log 2})^k,
end{eqnarray}$$and
$$begin{eqnarray}
sum_{n=2^k}^{2^{k+1}-1} a^{log n}&le&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k+1}\&=&2^kcdot( a^{log2})^{k+1}\&le& (2cdot a^{log2})^{k+1}
end{eqnarray}$$ for all $kge 0$. This shows
$$
lim_{Ntoinfty}sum_{n=1}^N a^{log n}=lim_{Ktoinfty}sum_{k=0}^K sum_{n=2^k}^{2^{k+1}-1} a^{log n}
$$ converges if and only if $sum_{k=0}^infty (2cdot a^{log 2})^k$ converges (by comparison test). This gives the condition
$
2cdot a^{log 2}<1,
$ or equivalently
$
2^{1+log a}<2^0=1.
$ Hence it is sufficient and necessary that $$log a<-1Leftrightarrow 0< a<frac{1}{e}.$$
$endgroup$
add a comment |
$begingroup$
Note that
$$begin{eqnarray}
sum_{n=2^k}^{2^{k+1}-1} a^{log n}&ge&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k}\&ge&2^kcdot (a^{log 2})^k\&=& (2cdot a^{log 2})^k,
end{eqnarray}$$and
$$begin{eqnarray}
sum_{n=2^k}^{2^{k+1}-1} a^{log n}&le&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k+1}\&=&2^kcdot( a^{log2})^{k+1}\&le& (2cdot a^{log2})^{k+1}
end{eqnarray}$$ for all $kge 0$. This shows
$$
lim_{Ntoinfty}sum_{n=1}^N a^{log n}=lim_{Ktoinfty}sum_{k=0}^K sum_{n=2^k}^{2^{k+1}-1} a^{log n}
$$ converges if and only if $sum_{k=0}^infty (2cdot a^{log 2})^k$ converges (by comparison test). This gives the condition
$
2cdot a^{log 2}<1,
$ or equivalently
$
2^{1+log a}<2^0=1.
$ Hence it is sufficient and necessary that $$log a<-1Leftrightarrow 0< a<frac{1}{e}.$$
$endgroup$
add a comment |
$begingroup$
Note that
$$begin{eqnarray}
sum_{n=2^k}^{2^{k+1}-1} a^{log n}&ge&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k}\&ge&2^kcdot (a^{log 2})^k\&=& (2cdot a^{log 2})^k,
end{eqnarray}$$and
$$begin{eqnarray}
sum_{n=2^k}^{2^{k+1}-1} a^{log n}&le&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k+1}\&=&2^kcdot( a^{log2})^{k+1}\&le& (2cdot a^{log2})^{k+1}
end{eqnarray}$$ for all $kge 0$. This shows
$$
lim_{Ntoinfty}sum_{n=1}^N a^{log n}=lim_{Ktoinfty}sum_{k=0}^K sum_{n=2^k}^{2^{k+1}-1} a^{log n}
$$ converges if and only if $sum_{k=0}^infty (2cdot a^{log 2})^k$ converges (by comparison test). This gives the condition
$
2cdot a^{log 2}<1,
$ or equivalently
$
2^{1+log a}<2^0=1.
$ Hence it is sufficient and necessary that $$log a<-1Leftrightarrow 0< a<frac{1}{e}.$$
$endgroup$
Note that
$$begin{eqnarray}
sum_{n=2^k}^{2^{k+1}-1} a^{log n}&ge&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k}\&ge&2^kcdot (a^{log 2})^k\&=& (2cdot a^{log 2})^k,
end{eqnarray}$$and
$$begin{eqnarray}
sum_{n=2^k}^{2^{k+1}-1} a^{log n}&le&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k+1}\&=&2^kcdot( a^{log2})^{k+1}\&le& (2cdot a^{log2})^{k+1}
end{eqnarray}$$ for all $kge 0$. This shows
$$
lim_{Ntoinfty}sum_{n=1}^N a^{log n}=lim_{Ktoinfty}sum_{k=0}^K sum_{n=2^k}^{2^{k+1}-1} a^{log n}
$$ converges if and only if $sum_{k=0}^infty (2cdot a^{log 2})^k$ converges (by comparison test). This gives the condition
$
2cdot a^{log 2}<1,
$ or equivalently
$
2^{1+log a}<2^0=1.
$ Hence it is sufficient and necessary that $$log a<-1Leftrightarrow 0< a<frac{1}{e}.$$
answered Jan 15 at 15:07
SongSong
18.6k21651
18.6k21651
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073864%2ffor-which-positive-real-numbers-a-does-sum-n-1-infty-a-log-n-converge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: $a^{log n}=e^{log acdotlog n}=dots$
$endgroup$
– Wojowu
Jan 14 at 23:03
$begingroup$
The answer $a<1$ is actually wrong. The correct one is $a<1/e$.
$endgroup$
– Wojowu
Jan 14 at 23:08