For which positive real numbers $a$ does $sum_{n=1}^infty a^{log n}$ converge?












-1












$begingroup$


I know the answer is $a<1$. I tried the ratio test which was inconclusive, and also the root test which did not work. Any tips on how to proceed?



Any help would be appreciated, thank you










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: $a^{log n}=e^{log acdotlog n}=dots$
    $endgroup$
    – Wojowu
    Jan 14 at 23:03










  • $begingroup$
    The answer $a<1$ is actually wrong. The correct one is $a<1/e$.
    $endgroup$
    – Wojowu
    Jan 14 at 23:08
















-1












$begingroup$


I know the answer is $a<1$. I tried the ratio test which was inconclusive, and also the root test which did not work. Any tips on how to proceed?



Any help would be appreciated, thank you










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: $a^{log n}=e^{log acdotlog n}=dots$
    $endgroup$
    – Wojowu
    Jan 14 at 23:03










  • $begingroup$
    The answer $a<1$ is actually wrong. The correct one is $a<1/e$.
    $endgroup$
    – Wojowu
    Jan 14 at 23:08














-1












-1








-1





$begingroup$


I know the answer is $a<1$. I tried the ratio test which was inconclusive, and also the root test which did not work. Any tips on how to proceed?



Any help would be appreciated, thank you










share|cite|improve this question











$endgroup$




I know the answer is $a<1$. I tried the ratio test which was inconclusive, and also the root test which did not work. Any tips on how to proceed?



Any help would be appreciated, thank you







sequences-and-series convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 14 at 23:00









Math1000

19.4k31746




19.4k31746










asked Jan 14 at 22:52









user101user101

304




304












  • $begingroup$
    Hint: $a^{log n}=e^{log acdotlog n}=dots$
    $endgroup$
    – Wojowu
    Jan 14 at 23:03










  • $begingroup$
    The answer $a<1$ is actually wrong. The correct one is $a<1/e$.
    $endgroup$
    – Wojowu
    Jan 14 at 23:08


















  • $begingroup$
    Hint: $a^{log n}=e^{log acdotlog n}=dots$
    $endgroup$
    – Wojowu
    Jan 14 at 23:03










  • $begingroup$
    The answer $a<1$ is actually wrong. The correct one is $a<1/e$.
    $endgroup$
    – Wojowu
    Jan 14 at 23:08
















$begingroup$
Hint: $a^{log n}=e^{log acdotlog n}=dots$
$endgroup$
– Wojowu
Jan 14 at 23:03




$begingroup$
Hint: $a^{log n}=e^{log acdotlog n}=dots$
$endgroup$
– Wojowu
Jan 14 at 23:03












$begingroup$
The answer $a<1$ is actually wrong. The correct one is $a<1/e$.
$endgroup$
– Wojowu
Jan 14 at 23:08




$begingroup$
The answer $a<1$ is actually wrong. The correct one is $a<1/e$.
$endgroup$
– Wojowu
Jan 14 at 23:08










2 Answers
2






active

oldest

votes


















2












$begingroup$

Notice that



$$ a^{log n} = exp( log a log n) = n^{log a } $$



Notice that $log a > 0$ iff $a > 1 $. Thus $sum a^{log n }$ diverges if $a geq 1$ and converges when $ log a < -1 $ or when $ a < 1/e $






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Series $n^c$ converges for $c<-1$, not $c<0$.
    $endgroup$
    – Wojowu
    Jan 14 at 23:09










  • $begingroup$
    fixed it now...
    $endgroup$
    – James
    Jan 14 at 23:14



















0












$begingroup$

Note that
$$begin{eqnarray}
sum_{n=2^k}^{2^{k+1}-1} a^{log n}&ge&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k}\&ge&2^kcdot (a^{log 2})^k\&=& (2cdot a^{log 2})^k,
end{eqnarray}$$
and
$$begin{eqnarray}
sum_{n=2^k}^{2^{k+1}-1} a^{log n}&le&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k+1}\&=&2^kcdot( a^{log2})^{k+1}\&le& (2cdot a^{log2})^{k+1}
end{eqnarray}$$
for all $kge 0$. This shows
$$
lim_{Ntoinfty}sum_{n=1}^N a^{log n}=lim_{Ktoinfty}sum_{k=0}^K sum_{n=2^k}^{2^{k+1}-1} a^{log n}
$$
converges if and only if $sum_{k=0}^infty (2cdot a^{log 2})^k$ converges (by comparison test). This gives the condition
$
2cdot a^{log 2}<1,
$
or equivalently
$
2^{1+log a}<2^0=1.
$
Hence it is sufficient and necessary that $$log a<-1Leftrightarrow 0< a<frac{1}{e}.$$






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073864%2ffor-which-positive-real-numbers-a-does-sum-n-1-infty-a-log-n-converge%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Notice that



    $$ a^{log n} = exp( log a log n) = n^{log a } $$



    Notice that $log a > 0$ iff $a > 1 $. Thus $sum a^{log n }$ diverges if $a geq 1$ and converges when $ log a < -1 $ or when $ a < 1/e $






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Series $n^c$ converges for $c<-1$, not $c<0$.
      $endgroup$
      – Wojowu
      Jan 14 at 23:09










    • $begingroup$
      fixed it now...
      $endgroup$
      – James
      Jan 14 at 23:14
















    2












    $begingroup$

    Notice that



    $$ a^{log n} = exp( log a log n) = n^{log a } $$



    Notice that $log a > 0$ iff $a > 1 $. Thus $sum a^{log n }$ diverges if $a geq 1$ and converges when $ log a < -1 $ or when $ a < 1/e $






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Series $n^c$ converges for $c<-1$, not $c<0$.
      $endgroup$
      – Wojowu
      Jan 14 at 23:09










    • $begingroup$
      fixed it now...
      $endgroup$
      – James
      Jan 14 at 23:14














    2












    2








    2





    $begingroup$

    Notice that



    $$ a^{log n} = exp( log a log n) = n^{log a } $$



    Notice that $log a > 0$ iff $a > 1 $. Thus $sum a^{log n }$ diverges if $a geq 1$ and converges when $ log a < -1 $ or when $ a < 1/e $






    share|cite|improve this answer











    $endgroup$



    Notice that



    $$ a^{log n} = exp( log a log n) = n^{log a } $$



    Notice that $log a > 0$ iff $a > 1 $. Thus $sum a^{log n }$ diverges if $a geq 1$ and converges when $ log a < -1 $ or when $ a < 1/e $







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 14 at 23:14

























    answered Jan 14 at 23:05









    JamesJames

    2,636425




    2,636425












    • $begingroup$
      Series $n^c$ converges for $c<-1$, not $c<0$.
      $endgroup$
      – Wojowu
      Jan 14 at 23:09










    • $begingroup$
      fixed it now...
      $endgroup$
      – James
      Jan 14 at 23:14


















    • $begingroup$
      Series $n^c$ converges for $c<-1$, not $c<0$.
      $endgroup$
      – Wojowu
      Jan 14 at 23:09










    • $begingroup$
      fixed it now...
      $endgroup$
      – James
      Jan 14 at 23:14
















    $begingroup$
    Series $n^c$ converges for $c<-1$, not $c<0$.
    $endgroup$
    – Wojowu
    Jan 14 at 23:09




    $begingroup$
    Series $n^c$ converges for $c<-1$, not $c<0$.
    $endgroup$
    – Wojowu
    Jan 14 at 23:09












    $begingroup$
    fixed it now...
    $endgroup$
    – James
    Jan 14 at 23:14




    $begingroup$
    fixed it now...
    $endgroup$
    – James
    Jan 14 at 23:14











    0












    $begingroup$

    Note that
    $$begin{eqnarray}
    sum_{n=2^k}^{2^{k+1}-1} a^{log n}&ge&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k}\&ge&2^kcdot (a^{log 2})^k\&=& (2cdot a^{log 2})^k,
    end{eqnarray}$$
    and
    $$begin{eqnarray}
    sum_{n=2^k}^{2^{k+1}-1} a^{log n}&le&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k+1}\&=&2^kcdot( a^{log2})^{k+1}\&le& (2cdot a^{log2})^{k+1}
    end{eqnarray}$$
    for all $kge 0$. This shows
    $$
    lim_{Ntoinfty}sum_{n=1}^N a^{log n}=lim_{Ktoinfty}sum_{k=0}^K sum_{n=2^k}^{2^{k+1}-1} a^{log n}
    $$
    converges if and only if $sum_{k=0}^infty (2cdot a^{log 2})^k$ converges (by comparison test). This gives the condition
    $
    2cdot a^{log 2}<1,
    $
    or equivalently
    $
    2^{1+log a}<2^0=1.
    $
    Hence it is sufficient and necessary that $$log a<-1Leftrightarrow 0< a<frac{1}{e}.$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Note that
      $$begin{eqnarray}
      sum_{n=2^k}^{2^{k+1}-1} a^{log n}&ge&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k}\&ge&2^kcdot (a^{log 2})^k\&=& (2cdot a^{log 2})^k,
      end{eqnarray}$$
      and
      $$begin{eqnarray}
      sum_{n=2^k}^{2^{k+1}-1} a^{log n}&le&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k+1}\&=&2^kcdot( a^{log2})^{k+1}\&le& (2cdot a^{log2})^{k+1}
      end{eqnarray}$$
      for all $kge 0$. This shows
      $$
      lim_{Ntoinfty}sum_{n=1}^N a^{log n}=lim_{Ktoinfty}sum_{k=0}^K sum_{n=2^k}^{2^{k+1}-1} a^{log n}
      $$
      converges if and only if $sum_{k=0}^infty (2cdot a^{log 2})^k$ converges (by comparison test). This gives the condition
      $
      2cdot a^{log 2}<1,
      $
      or equivalently
      $
      2^{1+log a}<2^0=1.
      $
      Hence it is sufficient and necessary that $$log a<-1Leftrightarrow 0< a<frac{1}{e}.$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Note that
        $$begin{eqnarray}
        sum_{n=2^k}^{2^{k+1}-1} a^{log n}&ge&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k}\&ge&2^kcdot (a^{log 2})^k\&=& (2cdot a^{log 2})^k,
        end{eqnarray}$$
        and
        $$begin{eqnarray}
        sum_{n=2^k}^{2^{k+1}-1} a^{log n}&le&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k+1}\&=&2^kcdot( a^{log2})^{k+1}\&le& (2cdot a^{log2})^{k+1}
        end{eqnarray}$$
        for all $kge 0$. This shows
        $$
        lim_{Ntoinfty}sum_{n=1}^N a^{log n}=lim_{Ktoinfty}sum_{k=0}^K sum_{n=2^k}^{2^{k+1}-1} a^{log n}
        $$
        converges if and only if $sum_{k=0}^infty (2cdot a^{log 2})^k$ converges (by comparison test). This gives the condition
        $
        2cdot a^{log 2}<1,
        $
        or equivalently
        $
        2^{1+log a}<2^0=1.
        $
        Hence it is sufficient and necessary that $$log a<-1Leftrightarrow 0< a<frac{1}{e}.$$






        share|cite|improve this answer









        $endgroup$



        Note that
        $$begin{eqnarray}
        sum_{n=2^k}^{2^{k+1}-1} a^{log n}&ge&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k}\&ge&2^kcdot (a^{log 2})^k\&=& (2cdot a^{log 2})^k,
        end{eqnarray}$$
        and
        $$begin{eqnarray}
        sum_{n=2^k}^{2^{k+1}-1} a^{log n}&le&sum_{n=2^k}^{2^{k+1}-1}(a^{log 2})^{k+1}\&=&2^kcdot( a^{log2})^{k+1}\&le& (2cdot a^{log2})^{k+1}
        end{eqnarray}$$
        for all $kge 0$. This shows
        $$
        lim_{Ntoinfty}sum_{n=1}^N a^{log n}=lim_{Ktoinfty}sum_{k=0}^K sum_{n=2^k}^{2^{k+1}-1} a^{log n}
        $$
        converges if and only if $sum_{k=0}^infty (2cdot a^{log 2})^k$ converges (by comparison test). This gives the condition
        $
        2cdot a^{log 2}<1,
        $
        or equivalently
        $
        2^{1+log a}<2^0=1.
        $
        Hence it is sufficient and necessary that $$log a<-1Leftrightarrow 0< a<frac{1}{e}.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 15 at 15:07









        SongSong

        18.6k21651




        18.6k21651






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073864%2ffor-which-positive-real-numbers-a-does-sum-n-1-infty-a-log-n-converge%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna