An identity for generalized hypergeometric function
$begingroup$
I think the following identity is true,
$$
frac{4 (4 s+9)}{3 Gamma left(s+frac{5}{2}right) Gamma left(s+frac{7}{2}right)}-frac{16 (s+2)}{3 Gamma (s+3)^2}=frac{, _3F_2left(2,s+frac{5}{2},s+frac{7}{2};s+4,s+5;1right)}{Gamma (s+4) Gamma (s+5)}
$$
But I haven't found anything useful in the literature.
This identity is inspired by this question.
hypergeometric-function
$endgroup$
add a comment |
$begingroup$
I think the following identity is true,
$$
frac{4 (4 s+9)}{3 Gamma left(s+frac{5}{2}right) Gamma left(s+frac{7}{2}right)}-frac{16 (s+2)}{3 Gamma (s+3)^2}=frac{, _3F_2left(2,s+frac{5}{2},s+frac{7}{2};s+4,s+5;1right)}{Gamma (s+4) Gamma (s+5)}
$$
But I haven't found anything useful in the literature.
This identity is inspired by this question.
hypergeometric-function
$endgroup$
1
$begingroup$
Since $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=sum_{ngeq0}frac{(a_1)_n(a_2)_n(a_3)_n}{(b_1)_n(b_2)_n n!}$$ And since $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$ you can factor: $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=frac{Gamma(b_1)Gamma(b_2)}{Gamma(a_1)Gamma(a_2)Gamma(a_3)}sum_{ngeq0}frac{Gamma(a_1+n)Gamma(a_2+n)Gamma(a_3+n)}{Gamma(b_1+n)Gamma(b_2+n) n!}$$ which will help you simplify things
$endgroup$
– clathratus
Jan 15 at 1:08
$begingroup$
This is only valid if s+5/2 is a nonpositive integer, right?
$endgroup$
– ablmf
Jan 15 at 14:43
$begingroup$
I think it's valid for $$text{Re},s>-frac52$$
$endgroup$
– clathratus
Jan 15 at 15:25
$begingroup$
Okay. For anyone who's interested in a proof, see Doron Zeilberger's book A=B, example 7.3.3.
$endgroup$
– ablmf
Jan 18 at 17:19
add a comment |
$begingroup$
I think the following identity is true,
$$
frac{4 (4 s+9)}{3 Gamma left(s+frac{5}{2}right) Gamma left(s+frac{7}{2}right)}-frac{16 (s+2)}{3 Gamma (s+3)^2}=frac{, _3F_2left(2,s+frac{5}{2},s+frac{7}{2};s+4,s+5;1right)}{Gamma (s+4) Gamma (s+5)}
$$
But I haven't found anything useful in the literature.
This identity is inspired by this question.
hypergeometric-function
$endgroup$
I think the following identity is true,
$$
frac{4 (4 s+9)}{3 Gamma left(s+frac{5}{2}right) Gamma left(s+frac{7}{2}right)}-frac{16 (s+2)}{3 Gamma (s+3)^2}=frac{, _3F_2left(2,s+frac{5}{2},s+frac{7}{2};s+4,s+5;1right)}{Gamma (s+4) Gamma (s+5)}
$$
But I haven't found anything useful in the literature.
This identity is inspired by this question.
hypergeometric-function
hypergeometric-function
asked Jan 15 at 0:16
ablmfablmf
2,58352452
2,58352452
1
$begingroup$
Since $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=sum_{ngeq0}frac{(a_1)_n(a_2)_n(a_3)_n}{(b_1)_n(b_2)_n n!}$$ And since $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$ you can factor: $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=frac{Gamma(b_1)Gamma(b_2)}{Gamma(a_1)Gamma(a_2)Gamma(a_3)}sum_{ngeq0}frac{Gamma(a_1+n)Gamma(a_2+n)Gamma(a_3+n)}{Gamma(b_1+n)Gamma(b_2+n) n!}$$ which will help you simplify things
$endgroup$
– clathratus
Jan 15 at 1:08
$begingroup$
This is only valid if s+5/2 is a nonpositive integer, right?
$endgroup$
– ablmf
Jan 15 at 14:43
$begingroup$
I think it's valid for $$text{Re},s>-frac52$$
$endgroup$
– clathratus
Jan 15 at 15:25
$begingroup$
Okay. For anyone who's interested in a proof, see Doron Zeilberger's book A=B, example 7.3.3.
$endgroup$
– ablmf
Jan 18 at 17:19
add a comment |
1
$begingroup$
Since $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=sum_{ngeq0}frac{(a_1)_n(a_2)_n(a_3)_n}{(b_1)_n(b_2)_n n!}$$ And since $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$ you can factor: $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=frac{Gamma(b_1)Gamma(b_2)}{Gamma(a_1)Gamma(a_2)Gamma(a_3)}sum_{ngeq0}frac{Gamma(a_1+n)Gamma(a_2+n)Gamma(a_3+n)}{Gamma(b_1+n)Gamma(b_2+n) n!}$$ which will help you simplify things
$endgroup$
– clathratus
Jan 15 at 1:08
$begingroup$
This is only valid if s+5/2 is a nonpositive integer, right?
$endgroup$
– ablmf
Jan 15 at 14:43
$begingroup$
I think it's valid for $$text{Re},s>-frac52$$
$endgroup$
– clathratus
Jan 15 at 15:25
$begingroup$
Okay. For anyone who's interested in a proof, see Doron Zeilberger's book A=B, example 7.3.3.
$endgroup$
– ablmf
Jan 18 at 17:19
1
1
$begingroup$
Since $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=sum_{ngeq0}frac{(a_1)_n(a_2)_n(a_3)_n}{(b_1)_n(b_2)_n n!}$$ And since $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$ you can factor: $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=frac{Gamma(b_1)Gamma(b_2)}{Gamma(a_1)Gamma(a_2)Gamma(a_3)}sum_{ngeq0}frac{Gamma(a_1+n)Gamma(a_2+n)Gamma(a_3+n)}{Gamma(b_1+n)Gamma(b_2+n) n!}$$ which will help you simplify things
$endgroup$
– clathratus
Jan 15 at 1:08
$begingroup$
Since $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=sum_{ngeq0}frac{(a_1)_n(a_2)_n(a_3)_n}{(b_1)_n(b_2)_n n!}$$ And since $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$ you can factor: $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=frac{Gamma(b_1)Gamma(b_2)}{Gamma(a_1)Gamma(a_2)Gamma(a_3)}sum_{ngeq0}frac{Gamma(a_1+n)Gamma(a_2+n)Gamma(a_3+n)}{Gamma(b_1+n)Gamma(b_2+n) n!}$$ which will help you simplify things
$endgroup$
– clathratus
Jan 15 at 1:08
$begingroup$
This is only valid if s+5/2 is a nonpositive integer, right?
$endgroup$
– ablmf
Jan 15 at 14:43
$begingroup$
This is only valid if s+5/2 is a nonpositive integer, right?
$endgroup$
– ablmf
Jan 15 at 14:43
$begingroup$
I think it's valid for $$text{Re},s>-frac52$$
$endgroup$
– clathratus
Jan 15 at 15:25
$begingroup$
I think it's valid for $$text{Re},s>-frac52$$
$endgroup$
– clathratus
Jan 15 at 15:25
$begingroup$
Okay. For anyone who's interested in a proof, see Doron Zeilberger's book A=B, example 7.3.3.
$endgroup$
– ablmf
Jan 18 at 17:19
$begingroup$
Okay. For anyone who's interested in a proof, see Doron Zeilberger's book A=B, example 7.3.3.
$endgroup$
– ablmf
Jan 18 at 17:19
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073925%2fan-identity-for-generalized-hypergeometric-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073925%2fan-identity-for-generalized-hypergeometric-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Since $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=sum_{ngeq0}frac{(a_1)_n(a_2)_n(a_3)_n}{(b_1)_n(b_2)_n n!}$$ And since $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$ you can factor: $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=frac{Gamma(b_1)Gamma(b_2)}{Gamma(a_1)Gamma(a_2)Gamma(a_3)}sum_{ngeq0}frac{Gamma(a_1+n)Gamma(a_2+n)Gamma(a_3+n)}{Gamma(b_1+n)Gamma(b_2+n) n!}$$ which will help you simplify things
$endgroup$
– clathratus
Jan 15 at 1:08
$begingroup$
This is only valid if s+5/2 is a nonpositive integer, right?
$endgroup$
– ablmf
Jan 15 at 14:43
$begingroup$
I think it's valid for $$text{Re},s>-frac52$$
$endgroup$
– clathratus
Jan 15 at 15:25
$begingroup$
Okay. For anyone who's interested in a proof, see Doron Zeilberger's book A=B, example 7.3.3.
$endgroup$
– ablmf
Jan 18 at 17:19