An identity for generalized hypergeometric function












2












$begingroup$


I think the following identity is true,
$$
frac{4 (4 s+9)}{3 Gamma left(s+frac{5}{2}right) Gamma left(s+frac{7}{2}right)}-frac{16 (s+2)}{3 Gamma (s+3)^2}=frac{, _3F_2left(2,s+frac{5}{2},s+frac{7}{2};s+4,s+5;1right)}{Gamma (s+4) Gamma (s+5)}
$$

But I haven't found anything useful in the literature.



This identity is inspired by this question.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Since $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=sum_{ngeq0}frac{(a_1)_n(a_2)_n(a_3)_n}{(b_1)_n(b_2)_n n!}$$ And since $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$ you can factor: $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=frac{Gamma(b_1)Gamma(b_2)}{Gamma(a_1)Gamma(a_2)Gamma(a_3)}sum_{ngeq0}frac{Gamma(a_1+n)Gamma(a_2+n)Gamma(a_3+n)}{Gamma(b_1+n)Gamma(b_2+n) n!}$$ which will help you simplify things
    $endgroup$
    – clathratus
    Jan 15 at 1:08












  • $begingroup$
    This is only valid if s+5/2 is a nonpositive integer, right?
    $endgroup$
    – ablmf
    Jan 15 at 14:43










  • $begingroup$
    I think it's valid for $$text{Re},s>-frac52$$
    $endgroup$
    – clathratus
    Jan 15 at 15:25












  • $begingroup$
    Okay. For anyone who's interested in a proof, see Doron Zeilberger's book A=B, example 7.3.3.
    $endgroup$
    – ablmf
    Jan 18 at 17:19
















2












$begingroup$


I think the following identity is true,
$$
frac{4 (4 s+9)}{3 Gamma left(s+frac{5}{2}right) Gamma left(s+frac{7}{2}right)}-frac{16 (s+2)}{3 Gamma (s+3)^2}=frac{, _3F_2left(2,s+frac{5}{2},s+frac{7}{2};s+4,s+5;1right)}{Gamma (s+4) Gamma (s+5)}
$$

But I haven't found anything useful in the literature.



This identity is inspired by this question.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Since $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=sum_{ngeq0}frac{(a_1)_n(a_2)_n(a_3)_n}{(b_1)_n(b_2)_n n!}$$ And since $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$ you can factor: $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=frac{Gamma(b_1)Gamma(b_2)}{Gamma(a_1)Gamma(a_2)Gamma(a_3)}sum_{ngeq0}frac{Gamma(a_1+n)Gamma(a_2+n)Gamma(a_3+n)}{Gamma(b_1+n)Gamma(b_2+n) n!}$$ which will help you simplify things
    $endgroup$
    – clathratus
    Jan 15 at 1:08












  • $begingroup$
    This is only valid if s+5/2 is a nonpositive integer, right?
    $endgroup$
    – ablmf
    Jan 15 at 14:43










  • $begingroup$
    I think it's valid for $$text{Re},s>-frac52$$
    $endgroup$
    – clathratus
    Jan 15 at 15:25












  • $begingroup$
    Okay. For anyone who's interested in a proof, see Doron Zeilberger's book A=B, example 7.3.3.
    $endgroup$
    – ablmf
    Jan 18 at 17:19














2












2








2


1



$begingroup$


I think the following identity is true,
$$
frac{4 (4 s+9)}{3 Gamma left(s+frac{5}{2}right) Gamma left(s+frac{7}{2}right)}-frac{16 (s+2)}{3 Gamma (s+3)^2}=frac{, _3F_2left(2,s+frac{5}{2},s+frac{7}{2};s+4,s+5;1right)}{Gamma (s+4) Gamma (s+5)}
$$

But I haven't found anything useful in the literature.



This identity is inspired by this question.










share|cite|improve this question









$endgroup$




I think the following identity is true,
$$
frac{4 (4 s+9)}{3 Gamma left(s+frac{5}{2}right) Gamma left(s+frac{7}{2}right)}-frac{16 (s+2)}{3 Gamma (s+3)^2}=frac{, _3F_2left(2,s+frac{5}{2},s+frac{7}{2};s+4,s+5;1right)}{Gamma (s+4) Gamma (s+5)}
$$

But I haven't found anything useful in the literature.



This identity is inspired by this question.







hypergeometric-function






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 15 at 0:16









ablmfablmf

2,58352452




2,58352452








  • 1




    $begingroup$
    Since $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=sum_{ngeq0}frac{(a_1)_n(a_2)_n(a_3)_n}{(b_1)_n(b_2)_n n!}$$ And since $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$ you can factor: $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=frac{Gamma(b_1)Gamma(b_2)}{Gamma(a_1)Gamma(a_2)Gamma(a_3)}sum_{ngeq0}frac{Gamma(a_1+n)Gamma(a_2+n)Gamma(a_3+n)}{Gamma(b_1+n)Gamma(b_2+n) n!}$$ which will help you simplify things
    $endgroup$
    – clathratus
    Jan 15 at 1:08












  • $begingroup$
    This is only valid if s+5/2 is a nonpositive integer, right?
    $endgroup$
    – ablmf
    Jan 15 at 14:43










  • $begingroup$
    I think it's valid for $$text{Re},s>-frac52$$
    $endgroup$
    – clathratus
    Jan 15 at 15:25












  • $begingroup$
    Okay. For anyone who's interested in a proof, see Doron Zeilberger's book A=B, example 7.3.3.
    $endgroup$
    – ablmf
    Jan 18 at 17:19














  • 1




    $begingroup$
    Since $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=sum_{ngeq0}frac{(a_1)_n(a_2)_n(a_3)_n}{(b_1)_n(b_2)_n n!}$$ And since $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$ you can factor: $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=frac{Gamma(b_1)Gamma(b_2)}{Gamma(a_1)Gamma(a_2)Gamma(a_3)}sum_{ngeq0}frac{Gamma(a_1+n)Gamma(a_2+n)Gamma(a_3+n)}{Gamma(b_1+n)Gamma(b_2+n) n!}$$ which will help you simplify things
    $endgroup$
    – clathratus
    Jan 15 at 1:08












  • $begingroup$
    This is only valid if s+5/2 is a nonpositive integer, right?
    $endgroup$
    – ablmf
    Jan 15 at 14:43










  • $begingroup$
    I think it's valid for $$text{Re},s>-frac52$$
    $endgroup$
    – clathratus
    Jan 15 at 15:25












  • $begingroup$
    Okay. For anyone who's interested in a proof, see Doron Zeilberger's book A=B, example 7.3.3.
    $endgroup$
    – ablmf
    Jan 18 at 17:19








1




1




$begingroup$
Since $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=sum_{ngeq0}frac{(a_1)_n(a_2)_n(a_3)_n}{(b_1)_n(b_2)_n n!}$$ And since $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$ you can factor: $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=frac{Gamma(b_1)Gamma(b_2)}{Gamma(a_1)Gamma(a_2)Gamma(a_3)}sum_{ngeq0}frac{Gamma(a_1+n)Gamma(a_2+n)Gamma(a_3+n)}{Gamma(b_1+n)Gamma(b_2+n) n!}$$ which will help you simplify things
$endgroup$
– clathratus
Jan 15 at 1:08






$begingroup$
Since $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=sum_{ngeq0}frac{(a_1)_n(a_2)_n(a_3)_n}{(b_1)_n(b_2)_n n!}$$ And since $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$ you can factor: $$,_3F_2(a_1,a_2,a_3;b_1,b_2;1)=frac{Gamma(b_1)Gamma(b_2)}{Gamma(a_1)Gamma(a_2)Gamma(a_3)}sum_{ngeq0}frac{Gamma(a_1+n)Gamma(a_2+n)Gamma(a_3+n)}{Gamma(b_1+n)Gamma(b_2+n) n!}$$ which will help you simplify things
$endgroup$
– clathratus
Jan 15 at 1:08














$begingroup$
This is only valid if s+5/2 is a nonpositive integer, right?
$endgroup$
– ablmf
Jan 15 at 14:43




$begingroup$
This is only valid if s+5/2 is a nonpositive integer, right?
$endgroup$
– ablmf
Jan 15 at 14:43












$begingroup$
I think it's valid for $$text{Re},s>-frac52$$
$endgroup$
– clathratus
Jan 15 at 15:25






$begingroup$
I think it's valid for $$text{Re},s>-frac52$$
$endgroup$
– clathratus
Jan 15 at 15:25














$begingroup$
Okay. For anyone who's interested in a proof, see Doron Zeilberger's book A=B, example 7.3.3.
$endgroup$
– ablmf
Jan 18 at 17:19




$begingroup$
Okay. For anyone who's interested in a proof, see Doron Zeilberger's book A=B, example 7.3.3.
$endgroup$
– ablmf
Jan 18 at 17:19










0






active

oldest

votes












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073925%2fan-identity-for-generalized-hypergeometric-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073925%2fan-identity-for-generalized-hypergeometric-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna