What is the factorization of $(da+dbi)^2$, $(da+dbi)^4$, and $(da+dbi)^8$,
$begingroup$
I need a clarification for factorization when the variable 'd' is included in $(a + ib)^n$, such that $(da + dib)^n$.
Specifically for three cases.
If $(a + ib)^2$ = $1*a^2 + 2iab − 1*b^2$,
then what would:
$(da + dib)^2$
= ??
For the first one I thought that $(da + dib)^2$ was either
- $d1*a^2 + d2iab − 1*b^2$
$d1*a^2 + d^22iab − 1*b^2$
however, according to an online calculator $(da + dib)^2$ = $d^2a^2+2d^2abi−d^2b^2$
If $(a + bi)^4$ = $a^4 + 4a^3bi − 6a^2b^2 − 4ab^3i + b^4$
then what would:
$(da + dib)^4$ = ??
If $(a + bi)^8$ = $a^8 + 8a^7bi − 28a^6b^2 − 56a^5b^3i + 70a^4b^4 + 56a^3b^5i − 28a^2b^6 − 8ab^7i + b^8$
then what would: $(da + dib)^8$ = ??
complex-numbers factoring
$endgroup$
add a comment |
$begingroup$
I need a clarification for factorization when the variable 'd' is included in $(a + ib)^n$, such that $(da + dib)^n$.
Specifically for three cases.
If $(a + ib)^2$ = $1*a^2 + 2iab − 1*b^2$,
then what would:
$(da + dib)^2$
= ??
For the first one I thought that $(da + dib)^2$ was either
- $d1*a^2 + d2iab − 1*b^2$
$d1*a^2 + d^22iab − 1*b^2$
however, according to an online calculator $(da + dib)^2$ = $d^2a^2+2d^2abi−d^2b^2$
If $(a + bi)^4$ = $a^4 + 4a^3bi − 6a^2b^2 − 4ab^3i + b^4$
then what would:
$(da + dib)^4$ = ??
If $(a + bi)^8$ = $a^8 + 8a^7bi − 28a^6b^2 − 56a^5b^3i + 70a^4b^4 + 56a^3b^5i − 28a^2b^6 − 8ab^7i + b^8$
then what would: $(da + dib)^8$ = ??
complex-numbers factoring
$endgroup$
add a comment |
$begingroup$
I need a clarification for factorization when the variable 'd' is included in $(a + ib)^n$, such that $(da + dib)^n$.
Specifically for three cases.
If $(a + ib)^2$ = $1*a^2 + 2iab − 1*b^2$,
then what would:
$(da + dib)^2$
= ??
For the first one I thought that $(da + dib)^2$ was either
- $d1*a^2 + d2iab − 1*b^2$
$d1*a^2 + d^22iab − 1*b^2$
however, according to an online calculator $(da + dib)^2$ = $d^2a^2+2d^2abi−d^2b^2$
If $(a + bi)^4$ = $a^4 + 4a^3bi − 6a^2b^2 − 4ab^3i + b^4$
then what would:
$(da + dib)^4$ = ??
If $(a + bi)^8$ = $a^8 + 8a^7bi − 28a^6b^2 − 56a^5b^3i + 70a^4b^4 + 56a^3b^5i − 28a^2b^6 − 8ab^7i + b^8$
then what would: $(da + dib)^8$ = ??
complex-numbers factoring
$endgroup$
I need a clarification for factorization when the variable 'd' is included in $(a + ib)^n$, such that $(da + dib)^n$.
Specifically for three cases.
If $(a + ib)^2$ = $1*a^2 + 2iab − 1*b^2$,
then what would:
$(da + dib)^2$
= ??
For the first one I thought that $(da + dib)^2$ was either
- $d1*a^2 + d2iab − 1*b^2$
$d1*a^2 + d^22iab − 1*b^2$
however, according to an online calculator $(da + dib)^2$ = $d^2a^2+2d^2abi−d^2b^2$
If $(a + bi)^4$ = $a^4 + 4a^3bi − 6a^2b^2 − 4ab^3i + b^4$
then what would:
$(da + dib)^4$ = ??
If $(a + bi)^8$ = $a^8 + 8a^7bi − 28a^6b^2 − 56a^5b^3i + 70a^4b^4 + 56a^3b^5i − 28a^2b^6 − 8ab^7i + b^8$
then what would: $(da + dib)^8$ = ??
complex-numbers factoring
complex-numbers factoring
edited Jan 14 at 0:01
Du'uzu Mes
asked Jan 13 at 23:53
Du'uzu MesDu'uzu Mes
135
135
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It looks like you simply need to factor out the variable $d$ from each expression. Note that
$$(da+dbi)^n = (d(a+bi))^n = d^n(a+bi)^n.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072694%2fwhat-is-the-factorization-of-dadbi2-dadbi4-and-dadbi8%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It looks like you simply need to factor out the variable $d$ from each expression. Note that
$$(da+dbi)^n = (d(a+bi))^n = d^n(a+bi)^n.$$
$endgroup$
add a comment |
$begingroup$
It looks like you simply need to factor out the variable $d$ from each expression. Note that
$$(da+dbi)^n = (d(a+bi))^n = d^n(a+bi)^n.$$
$endgroup$
add a comment |
$begingroup$
It looks like you simply need to factor out the variable $d$ from each expression. Note that
$$(da+dbi)^n = (d(a+bi))^n = d^n(a+bi)^n.$$
$endgroup$
It looks like you simply need to factor out the variable $d$ from each expression. Note that
$$(da+dbi)^n = (d(a+bi))^n = d^n(a+bi)^n.$$
answered Jan 13 at 23:56
D.B.D.B.
1,61029
1,61029
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072694%2fwhat-is-the-factorization-of-dadbi2-dadbi4-and-dadbi8%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown