Associated Legendre Polynomials Orthogonality Proof: $int_{-1}^1 P_k^m(x) cdot P_l^m(x) ; mathrm{d} x =...
I have to solve the following equation using associated legendre polynomials,
$$int_{-1}^1 P_k^m(x) cdot P_l^m(x) ; mathrm{d} x = frac{2(l+m)!}{(2l+1)(l-m)!} delta_{k,l}$$
Where they are associated Legendre polynomials.
Any hint or help will be great.
physics legendre-polynomials
add a comment |
I have to solve the following equation using associated legendre polynomials,
$$int_{-1}^1 P_k^m(x) cdot P_l^m(x) ; mathrm{d} x = frac{2(l+m)!}{(2l+1)(l-m)!} delta_{k,l}$$
Where they are associated Legendre polynomials.
Any hint or help will be great.
physics legendre-polynomials
add a comment |
I have to solve the following equation using associated legendre polynomials,
$$int_{-1}^1 P_k^m(x) cdot P_l^m(x) ; mathrm{d} x = frac{2(l+m)!}{(2l+1)(l-m)!} delta_{k,l}$$
Where they are associated Legendre polynomials.
Any hint or help will be great.
physics legendre-polynomials
I have to solve the following equation using associated legendre polynomials,
$$int_{-1}^1 P_k^m(x) cdot P_l^m(x) ; mathrm{d} x = frac{2(l+m)!}{(2l+1)(l-m)!} delta_{k,l}$$
Where they are associated Legendre polynomials.
Any hint or help will be great.
physics legendre-polynomials
physics legendre-polynomials
edited Dec 7 at 16:01
Nosrati
26.4k62353
26.4k62353
asked Apr 11 '16 at 9:16
MathCurious314
148110
148110
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Let be
$$mathcal A_{k l}^m = int_{-1}^1 P_k^m left({x}right) P_l^m left({x}right) , mathrm d x $$
where the associated Legendre functions are
$$P^m_l left({x}right) = left({1 - x^2}right)^{m/2} dfrac {mathrm d^m P_l left({x}right)} {mathrm d x^m}={left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k }qquad 0 le m le l$$
Thus we have
$$mathcal A_{k l}^m = frac 1 {2^{k + l} k! l!} int_{-1}^1 left({left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k}right) left({frac{mathrm d^{l + m} } {mathrm d x^{l + m} } left({x^2 - 1}right)^l }right) , mathrm d x$$
where $k$ and $l$ occur symmetrically.
Let $l ge k$.
We can integrate by parts $l + m$ times
$$int_{-1}^1 u v' mathrm d x = left.{u v}right|_{-1}^1 - int_{-1}^1 v u' mathrm d x$$
where $u = left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k$ and
$v' = frac {mathrm d^{l + m}} {mathrm d x^{l + m}} left({x^2 - 1}right)^l$
For each of the first $m$ integrations by parts, $u$ in the $left.{uv}right|_{-1}^1$ term contains the factor $left({1 - x^2}right)$, so the term vanishes.
For each of the remaining $l$ integrations, $v$ in that term contains the factor $left({x^2 - 1}right)$ so the term also vanishes.
This means
$$ mathcal A_{k l}^m = frac {left({-1}right)^{l + m} } {2^{k + l} k! l!} int_{-1}^1 left({x^2 - 1}right)^l frac {mathrm d^{l + m} } {mathrm d x^{l + m} } left({left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k }right) , mathrm d x$$
Expanding the second factor using Leibniz's Rule
$$frac {mathrm d^{l + m} } {mathrm d x^{l + m} } left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k= sum_{r mathop = 0}^{l + m} binom {l + m} r
frac {mathrm d^r} {mathrm d x^r} left({1 - x^2}right)^m frac {mathrm d^{l + k + 2 m - r} } {mathrm d x^{l + k + 2 m - r} } left({x^2 - 1}right)^k$$
the leftmost derivative in the sum is non-zero only when $r le 2 m$ (remembering that $m le l$) and the other derivative is non-zero only when $k + l + 2 m - r le 2 k$, that is, when $r ge 2 m + l - k$.
Because $l ge k$, these two conditions imply that the only non-zero term in the sum occurs when $r = 2 m$ and $l = k$.
Thus
$$mathcal A_{k l}^m = left({-1}right)^l delta_{k l} frac {left({-1}right)^{l + m} } {2^{2 l} left({l!}right)^2}
binom {l + m} {2 m} int_{-1}^1 left({x^2 - 1}right)^l frac {mathrm d^{2 m} } {mathrm d x^{2 m} } left({1 - x^2}right)^m frac {mathrm d^{2 l} } {mathrm d x^{2 l} } left({1 - x^2}right)^l mathrm d x$$
where $delta_{k l}$ is the Kronecker Delta.
The factor $(-1)^l$ at the front of $mathcal A_{k l}^m$ comes from switching the sign of $x^2 - 1$ inside $left({x^2 - 1}right)^l$.
To evaluate the differentiated factors, expand $left({1 - x^2}right)^k$ using the Binomial Theorem
$$left({1 - x^2}right)^k = sum_{j mathop = 0}^k binom k j left({-1}right)^{k-j} x^{2 left({k-j}right)}$$
The only term that survives differentiation $2^k$ times is the $x^{2 k}$ term, which after differentiation gives
$$left({-1}right)^k binom k 0 2 k! = left({-1}right)^k left({2k}right)!$$
Therefore
$$mathcal A_{k l}^m = left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} int_{-1}^1 left({x^2 - 1}right)^l mathrm d x =left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} mathcal B_l$$
The integral
$$mathcal B_l=int_{-1}^1 left({x^2 - 1}right)^l mathrm d x$$
can be evaluated by a change of variable $x = cos theta$
Thus
$$mathcal B_l= left({-1}right)^{l + 1} int_pi^0 left({sin theta }right)^{2 l + 1} , mathrm d theta=left({-1}right)^{l} int_0^pi left({sin theta }right)^{2 l + 1} , mathrm d theta$$
Integration of
$$frac {mathrm d left({sin^{n - 1} theta cos theta}right)} {mathrm d theta} = left({n-1}right) sin^{n-2} theta - n sin^n theta$$
gives
$$int_0^pi sin^n theta , mathrm d theta = frac {left.{-sin^{n - 1} theta cos theta}right|_0^pi} n + frac {left({n - 1}right)} n int_0^pi sin^{n - 2} theta , mathrm d theta= frac {left({n - 1}right)} n int_0^pi sin ^{n - 2} theta , mathrm d theta$$
since
$displaystyle left.{-sin^{n-1} theta cos theta}right|_0^pi = 0$ for $n > 1$.
Applying this result to $int_0^pi left({sin theta }right)^{2 l + 1} , mathrm d theta$ and changing the variable back to $x$ yields:
$$int_{-1}^1 left({x^2 - 1}right)^l , mathrm d x = - frac {2 l} {2 l + 1} int_{-1}^1 left({x^2 - 1}right)^{l - 1} , mathrm d xquadtext{for};l ge 1$$
Using this recursively
$$displaystyle int_{-1}^1 left({x^2 - 1}right)^l , mathrm d x = left({-1}right)^l left({frac {2 l} {2 l + 1} frac {2 left({l - 1}right)} {2 l - 1} frac {2 left({l - 2}right)} {2 l - 3} cdots frac 2 3}right) int_{-1}^1 , mathrm d x$$
and noting that
$$ frac {2 l} {2 l + 1} frac {2 left({l-1}right) } {2 l - 1} frac {2 left({l - 2}right)} {2 l - 3} cdots frac 2 3= frac {2^l l!} {left({2 l + 1}right) left({2 l - 1}right) left({2 l - 3}right) cdots 3}
= frac{2^l l!} {frac {left({2 l + 1}right)!} {2^l l!} }
= frac {2^{2 l} left({l!}right)^2} {left({2 l + 1}right)!}
$$
it follows that
$$mathcal B_l=int_{-1}^1 left({x^2 - 1}right)^l mathrm d x = left({-1}right)^l frac{2^{2l+1} left({l!}right)^2} {left({2l+1}right) !}$$
Therefore we have
$$mathcal A_{k l}^m =left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} mathcal B_l= delta _{k l} frac 2 {2 l + 1}
frac {left({l + m}right) !} {left({l - m}right)!}$$
that is
$$int_{-1}^1 P_k^m left({x}right) P_l^m left({x}right) , mathrm d x = delta _{k l} frac 2 {2 l + 1}
frac {left({l + m}right) !} {left({l - m}right)!}$$
In your second equation you have a "$k$" which is on the right side but not in the left, and $k$ is not a dummy variable. Did you copy this from some source? What is "k" there? how do you justify changing the power from $m/2$ to $m$?
– Herman Jaramillo
Apr 7 '17 at 0:35
It seems that you are using Rodriguez's formula but if so, then you are forgetting the $1/(2^k k!)$ factor....
– Herman Jaramillo
Apr 7 '17 at 0:41
I think I know what happened. You forgot to write the $P_k^m(x)$ factor on the left (and the coefficients of the Rodriguez's formula).
– Herman Jaramillo
Apr 7 '17 at 0:49
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1737301%2fassociated-legendre-polynomials-orthogonality-proof-int-11-p-kmx-cdot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let be
$$mathcal A_{k l}^m = int_{-1}^1 P_k^m left({x}right) P_l^m left({x}right) , mathrm d x $$
where the associated Legendre functions are
$$P^m_l left({x}right) = left({1 - x^2}right)^{m/2} dfrac {mathrm d^m P_l left({x}right)} {mathrm d x^m}={left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k }qquad 0 le m le l$$
Thus we have
$$mathcal A_{k l}^m = frac 1 {2^{k + l} k! l!} int_{-1}^1 left({left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k}right) left({frac{mathrm d^{l + m} } {mathrm d x^{l + m} } left({x^2 - 1}right)^l }right) , mathrm d x$$
where $k$ and $l$ occur symmetrically.
Let $l ge k$.
We can integrate by parts $l + m$ times
$$int_{-1}^1 u v' mathrm d x = left.{u v}right|_{-1}^1 - int_{-1}^1 v u' mathrm d x$$
where $u = left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k$ and
$v' = frac {mathrm d^{l + m}} {mathrm d x^{l + m}} left({x^2 - 1}right)^l$
For each of the first $m$ integrations by parts, $u$ in the $left.{uv}right|_{-1}^1$ term contains the factor $left({1 - x^2}right)$, so the term vanishes.
For each of the remaining $l$ integrations, $v$ in that term contains the factor $left({x^2 - 1}right)$ so the term also vanishes.
This means
$$ mathcal A_{k l}^m = frac {left({-1}right)^{l + m} } {2^{k + l} k! l!} int_{-1}^1 left({x^2 - 1}right)^l frac {mathrm d^{l + m} } {mathrm d x^{l + m} } left({left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k }right) , mathrm d x$$
Expanding the second factor using Leibniz's Rule
$$frac {mathrm d^{l + m} } {mathrm d x^{l + m} } left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k= sum_{r mathop = 0}^{l + m} binom {l + m} r
frac {mathrm d^r} {mathrm d x^r} left({1 - x^2}right)^m frac {mathrm d^{l + k + 2 m - r} } {mathrm d x^{l + k + 2 m - r} } left({x^2 - 1}right)^k$$
the leftmost derivative in the sum is non-zero only when $r le 2 m$ (remembering that $m le l$) and the other derivative is non-zero only when $k + l + 2 m - r le 2 k$, that is, when $r ge 2 m + l - k$.
Because $l ge k$, these two conditions imply that the only non-zero term in the sum occurs when $r = 2 m$ and $l = k$.
Thus
$$mathcal A_{k l}^m = left({-1}right)^l delta_{k l} frac {left({-1}right)^{l + m} } {2^{2 l} left({l!}right)^2}
binom {l + m} {2 m} int_{-1}^1 left({x^2 - 1}right)^l frac {mathrm d^{2 m} } {mathrm d x^{2 m} } left({1 - x^2}right)^m frac {mathrm d^{2 l} } {mathrm d x^{2 l} } left({1 - x^2}right)^l mathrm d x$$
where $delta_{k l}$ is the Kronecker Delta.
The factor $(-1)^l$ at the front of $mathcal A_{k l}^m$ comes from switching the sign of $x^2 - 1$ inside $left({x^2 - 1}right)^l$.
To evaluate the differentiated factors, expand $left({1 - x^2}right)^k$ using the Binomial Theorem
$$left({1 - x^2}right)^k = sum_{j mathop = 0}^k binom k j left({-1}right)^{k-j} x^{2 left({k-j}right)}$$
The only term that survives differentiation $2^k$ times is the $x^{2 k}$ term, which after differentiation gives
$$left({-1}right)^k binom k 0 2 k! = left({-1}right)^k left({2k}right)!$$
Therefore
$$mathcal A_{k l}^m = left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} int_{-1}^1 left({x^2 - 1}right)^l mathrm d x =left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} mathcal B_l$$
The integral
$$mathcal B_l=int_{-1}^1 left({x^2 - 1}right)^l mathrm d x$$
can be evaluated by a change of variable $x = cos theta$
Thus
$$mathcal B_l= left({-1}right)^{l + 1} int_pi^0 left({sin theta }right)^{2 l + 1} , mathrm d theta=left({-1}right)^{l} int_0^pi left({sin theta }right)^{2 l + 1} , mathrm d theta$$
Integration of
$$frac {mathrm d left({sin^{n - 1} theta cos theta}right)} {mathrm d theta} = left({n-1}right) sin^{n-2} theta - n sin^n theta$$
gives
$$int_0^pi sin^n theta , mathrm d theta = frac {left.{-sin^{n - 1} theta cos theta}right|_0^pi} n + frac {left({n - 1}right)} n int_0^pi sin^{n - 2} theta , mathrm d theta= frac {left({n - 1}right)} n int_0^pi sin ^{n - 2} theta , mathrm d theta$$
since
$displaystyle left.{-sin^{n-1} theta cos theta}right|_0^pi = 0$ for $n > 1$.
Applying this result to $int_0^pi left({sin theta }right)^{2 l + 1} , mathrm d theta$ and changing the variable back to $x$ yields:
$$int_{-1}^1 left({x^2 - 1}right)^l , mathrm d x = - frac {2 l} {2 l + 1} int_{-1}^1 left({x^2 - 1}right)^{l - 1} , mathrm d xquadtext{for};l ge 1$$
Using this recursively
$$displaystyle int_{-1}^1 left({x^2 - 1}right)^l , mathrm d x = left({-1}right)^l left({frac {2 l} {2 l + 1} frac {2 left({l - 1}right)} {2 l - 1} frac {2 left({l - 2}right)} {2 l - 3} cdots frac 2 3}right) int_{-1}^1 , mathrm d x$$
and noting that
$$ frac {2 l} {2 l + 1} frac {2 left({l-1}right) } {2 l - 1} frac {2 left({l - 2}right)} {2 l - 3} cdots frac 2 3= frac {2^l l!} {left({2 l + 1}right) left({2 l - 1}right) left({2 l - 3}right) cdots 3}
= frac{2^l l!} {frac {left({2 l + 1}right)!} {2^l l!} }
= frac {2^{2 l} left({l!}right)^2} {left({2 l + 1}right)!}
$$
it follows that
$$mathcal B_l=int_{-1}^1 left({x^2 - 1}right)^l mathrm d x = left({-1}right)^l frac{2^{2l+1} left({l!}right)^2} {left({2l+1}right) !}$$
Therefore we have
$$mathcal A_{k l}^m =left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} mathcal B_l= delta _{k l} frac 2 {2 l + 1}
frac {left({l + m}right) !} {left({l - m}right)!}$$
that is
$$int_{-1}^1 P_k^m left({x}right) P_l^m left({x}right) , mathrm d x = delta _{k l} frac 2 {2 l + 1}
frac {left({l + m}right) !} {left({l - m}right)!}$$
In your second equation you have a "$k$" which is on the right side but not in the left, and $k$ is not a dummy variable. Did you copy this from some source? What is "k" there? how do you justify changing the power from $m/2$ to $m$?
– Herman Jaramillo
Apr 7 '17 at 0:35
It seems that you are using Rodriguez's formula but if so, then you are forgetting the $1/(2^k k!)$ factor....
– Herman Jaramillo
Apr 7 '17 at 0:41
I think I know what happened. You forgot to write the $P_k^m(x)$ factor on the left (and the coefficients of the Rodriguez's formula).
– Herman Jaramillo
Apr 7 '17 at 0:49
add a comment |
Let be
$$mathcal A_{k l}^m = int_{-1}^1 P_k^m left({x}right) P_l^m left({x}right) , mathrm d x $$
where the associated Legendre functions are
$$P^m_l left({x}right) = left({1 - x^2}right)^{m/2} dfrac {mathrm d^m P_l left({x}right)} {mathrm d x^m}={left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k }qquad 0 le m le l$$
Thus we have
$$mathcal A_{k l}^m = frac 1 {2^{k + l} k! l!} int_{-1}^1 left({left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k}right) left({frac{mathrm d^{l + m} } {mathrm d x^{l + m} } left({x^2 - 1}right)^l }right) , mathrm d x$$
where $k$ and $l$ occur symmetrically.
Let $l ge k$.
We can integrate by parts $l + m$ times
$$int_{-1}^1 u v' mathrm d x = left.{u v}right|_{-1}^1 - int_{-1}^1 v u' mathrm d x$$
where $u = left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k$ and
$v' = frac {mathrm d^{l + m}} {mathrm d x^{l + m}} left({x^2 - 1}right)^l$
For each of the first $m$ integrations by parts, $u$ in the $left.{uv}right|_{-1}^1$ term contains the factor $left({1 - x^2}right)$, so the term vanishes.
For each of the remaining $l$ integrations, $v$ in that term contains the factor $left({x^2 - 1}right)$ so the term also vanishes.
This means
$$ mathcal A_{k l}^m = frac {left({-1}right)^{l + m} } {2^{k + l} k! l!} int_{-1}^1 left({x^2 - 1}right)^l frac {mathrm d^{l + m} } {mathrm d x^{l + m} } left({left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k }right) , mathrm d x$$
Expanding the second factor using Leibniz's Rule
$$frac {mathrm d^{l + m} } {mathrm d x^{l + m} } left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k= sum_{r mathop = 0}^{l + m} binom {l + m} r
frac {mathrm d^r} {mathrm d x^r} left({1 - x^2}right)^m frac {mathrm d^{l + k + 2 m - r} } {mathrm d x^{l + k + 2 m - r} } left({x^2 - 1}right)^k$$
the leftmost derivative in the sum is non-zero only when $r le 2 m$ (remembering that $m le l$) and the other derivative is non-zero only when $k + l + 2 m - r le 2 k$, that is, when $r ge 2 m + l - k$.
Because $l ge k$, these two conditions imply that the only non-zero term in the sum occurs when $r = 2 m$ and $l = k$.
Thus
$$mathcal A_{k l}^m = left({-1}right)^l delta_{k l} frac {left({-1}right)^{l + m} } {2^{2 l} left({l!}right)^2}
binom {l + m} {2 m} int_{-1}^1 left({x^2 - 1}right)^l frac {mathrm d^{2 m} } {mathrm d x^{2 m} } left({1 - x^2}right)^m frac {mathrm d^{2 l} } {mathrm d x^{2 l} } left({1 - x^2}right)^l mathrm d x$$
where $delta_{k l}$ is the Kronecker Delta.
The factor $(-1)^l$ at the front of $mathcal A_{k l}^m$ comes from switching the sign of $x^2 - 1$ inside $left({x^2 - 1}right)^l$.
To evaluate the differentiated factors, expand $left({1 - x^2}right)^k$ using the Binomial Theorem
$$left({1 - x^2}right)^k = sum_{j mathop = 0}^k binom k j left({-1}right)^{k-j} x^{2 left({k-j}right)}$$
The only term that survives differentiation $2^k$ times is the $x^{2 k}$ term, which after differentiation gives
$$left({-1}right)^k binom k 0 2 k! = left({-1}right)^k left({2k}right)!$$
Therefore
$$mathcal A_{k l}^m = left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} int_{-1}^1 left({x^2 - 1}right)^l mathrm d x =left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} mathcal B_l$$
The integral
$$mathcal B_l=int_{-1}^1 left({x^2 - 1}right)^l mathrm d x$$
can be evaluated by a change of variable $x = cos theta$
Thus
$$mathcal B_l= left({-1}right)^{l + 1} int_pi^0 left({sin theta }right)^{2 l + 1} , mathrm d theta=left({-1}right)^{l} int_0^pi left({sin theta }right)^{2 l + 1} , mathrm d theta$$
Integration of
$$frac {mathrm d left({sin^{n - 1} theta cos theta}right)} {mathrm d theta} = left({n-1}right) sin^{n-2} theta - n sin^n theta$$
gives
$$int_0^pi sin^n theta , mathrm d theta = frac {left.{-sin^{n - 1} theta cos theta}right|_0^pi} n + frac {left({n - 1}right)} n int_0^pi sin^{n - 2} theta , mathrm d theta= frac {left({n - 1}right)} n int_0^pi sin ^{n - 2} theta , mathrm d theta$$
since
$displaystyle left.{-sin^{n-1} theta cos theta}right|_0^pi = 0$ for $n > 1$.
Applying this result to $int_0^pi left({sin theta }right)^{2 l + 1} , mathrm d theta$ and changing the variable back to $x$ yields:
$$int_{-1}^1 left({x^2 - 1}right)^l , mathrm d x = - frac {2 l} {2 l + 1} int_{-1}^1 left({x^2 - 1}right)^{l - 1} , mathrm d xquadtext{for};l ge 1$$
Using this recursively
$$displaystyle int_{-1}^1 left({x^2 - 1}right)^l , mathrm d x = left({-1}right)^l left({frac {2 l} {2 l + 1} frac {2 left({l - 1}right)} {2 l - 1} frac {2 left({l - 2}right)} {2 l - 3} cdots frac 2 3}right) int_{-1}^1 , mathrm d x$$
and noting that
$$ frac {2 l} {2 l + 1} frac {2 left({l-1}right) } {2 l - 1} frac {2 left({l - 2}right)} {2 l - 3} cdots frac 2 3= frac {2^l l!} {left({2 l + 1}right) left({2 l - 1}right) left({2 l - 3}right) cdots 3}
= frac{2^l l!} {frac {left({2 l + 1}right)!} {2^l l!} }
= frac {2^{2 l} left({l!}right)^2} {left({2 l + 1}right)!}
$$
it follows that
$$mathcal B_l=int_{-1}^1 left({x^2 - 1}right)^l mathrm d x = left({-1}right)^l frac{2^{2l+1} left({l!}right)^2} {left({2l+1}right) !}$$
Therefore we have
$$mathcal A_{k l}^m =left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} mathcal B_l= delta _{k l} frac 2 {2 l + 1}
frac {left({l + m}right) !} {left({l - m}right)!}$$
that is
$$int_{-1}^1 P_k^m left({x}right) P_l^m left({x}right) , mathrm d x = delta _{k l} frac 2 {2 l + 1}
frac {left({l + m}right) !} {left({l - m}right)!}$$
In your second equation you have a "$k$" which is on the right side but not in the left, and $k$ is not a dummy variable. Did you copy this from some source? What is "k" there? how do you justify changing the power from $m/2$ to $m$?
– Herman Jaramillo
Apr 7 '17 at 0:35
It seems that you are using Rodriguez's formula but if so, then you are forgetting the $1/(2^k k!)$ factor....
– Herman Jaramillo
Apr 7 '17 at 0:41
I think I know what happened. You forgot to write the $P_k^m(x)$ factor on the left (and the coefficients of the Rodriguez's formula).
– Herman Jaramillo
Apr 7 '17 at 0:49
add a comment |
Let be
$$mathcal A_{k l}^m = int_{-1}^1 P_k^m left({x}right) P_l^m left({x}right) , mathrm d x $$
where the associated Legendre functions are
$$P^m_l left({x}right) = left({1 - x^2}right)^{m/2} dfrac {mathrm d^m P_l left({x}right)} {mathrm d x^m}={left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k }qquad 0 le m le l$$
Thus we have
$$mathcal A_{k l}^m = frac 1 {2^{k + l} k! l!} int_{-1}^1 left({left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k}right) left({frac{mathrm d^{l + m} } {mathrm d x^{l + m} } left({x^2 - 1}right)^l }right) , mathrm d x$$
where $k$ and $l$ occur symmetrically.
Let $l ge k$.
We can integrate by parts $l + m$ times
$$int_{-1}^1 u v' mathrm d x = left.{u v}right|_{-1}^1 - int_{-1}^1 v u' mathrm d x$$
where $u = left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k$ and
$v' = frac {mathrm d^{l + m}} {mathrm d x^{l + m}} left({x^2 - 1}right)^l$
For each of the first $m$ integrations by parts, $u$ in the $left.{uv}right|_{-1}^1$ term contains the factor $left({1 - x^2}right)$, so the term vanishes.
For each of the remaining $l$ integrations, $v$ in that term contains the factor $left({x^2 - 1}right)$ so the term also vanishes.
This means
$$ mathcal A_{k l}^m = frac {left({-1}right)^{l + m} } {2^{k + l} k! l!} int_{-1}^1 left({x^2 - 1}right)^l frac {mathrm d^{l + m} } {mathrm d x^{l + m} } left({left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k }right) , mathrm d x$$
Expanding the second factor using Leibniz's Rule
$$frac {mathrm d^{l + m} } {mathrm d x^{l + m} } left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k= sum_{r mathop = 0}^{l + m} binom {l + m} r
frac {mathrm d^r} {mathrm d x^r} left({1 - x^2}right)^m frac {mathrm d^{l + k + 2 m - r} } {mathrm d x^{l + k + 2 m - r} } left({x^2 - 1}right)^k$$
the leftmost derivative in the sum is non-zero only when $r le 2 m$ (remembering that $m le l$) and the other derivative is non-zero only when $k + l + 2 m - r le 2 k$, that is, when $r ge 2 m + l - k$.
Because $l ge k$, these two conditions imply that the only non-zero term in the sum occurs when $r = 2 m$ and $l = k$.
Thus
$$mathcal A_{k l}^m = left({-1}right)^l delta_{k l} frac {left({-1}right)^{l + m} } {2^{2 l} left({l!}right)^2}
binom {l + m} {2 m} int_{-1}^1 left({x^2 - 1}right)^l frac {mathrm d^{2 m} } {mathrm d x^{2 m} } left({1 - x^2}right)^m frac {mathrm d^{2 l} } {mathrm d x^{2 l} } left({1 - x^2}right)^l mathrm d x$$
where $delta_{k l}$ is the Kronecker Delta.
The factor $(-1)^l$ at the front of $mathcal A_{k l}^m$ comes from switching the sign of $x^2 - 1$ inside $left({x^2 - 1}right)^l$.
To evaluate the differentiated factors, expand $left({1 - x^2}right)^k$ using the Binomial Theorem
$$left({1 - x^2}right)^k = sum_{j mathop = 0}^k binom k j left({-1}right)^{k-j} x^{2 left({k-j}right)}$$
The only term that survives differentiation $2^k$ times is the $x^{2 k}$ term, which after differentiation gives
$$left({-1}right)^k binom k 0 2 k! = left({-1}right)^k left({2k}right)!$$
Therefore
$$mathcal A_{k l}^m = left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} int_{-1}^1 left({x^2 - 1}right)^l mathrm d x =left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} mathcal B_l$$
The integral
$$mathcal B_l=int_{-1}^1 left({x^2 - 1}right)^l mathrm d x$$
can be evaluated by a change of variable $x = cos theta$
Thus
$$mathcal B_l= left({-1}right)^{l + 1} int_pi^0 left({sin theta }right)^{2 l + 1} , mathrm d theta=left({-1}right)^{l} int_0^pi left({sin theta }right)^{2 l + 1} , mathrm d theta$$
Integration of
$$frac {mathrm d left({sin^{n - 1} theta cos theta}right)} {mathrm d theta} = left({n-1}right) sin^{n-2} theta - n sin^n theta$$
gives
$$int_0^pi sin^n theta , mathrm d theta = frac {left.{-sin^{n - 1} theta cos theta}right|_0^pi} n + frac {left({n - 1}right)} n int_0^pi sin^{n - 2} theta , mathrm d theta= frac {left({n - 1}right)} n int_0^pi sin ^{n - 2} theta , mathrm d theta$$
since
$displaystyle left.{-sin^{n-1} theta cos theta}right|_0^pi = 0$ for $n > 1$.
Applying this result to $int_0^pi left({sin theta }right)^{2 l + 1} , mathrm d theta$ and changing the variable back to $x$ yields:
$$int_{-1}^1 left({x^2 - 1}right)^l , mathrm d x = - frac {2 l} {2 l + 1} int_{-1}^1 left({x^2 - 1}right)^{l - 1} , mathrm d xquadtext{for};l ge 1$$
Using this recursively
$$displaystyle int_{-1}^1 left({x^2 - 1}right)^l , mathrm d x = left({-1}right)^l left({frac {2 l} {2 l + 1} frac {2 left({l - 1}right)} {2 l - 1} frac {2 left({l - 2}right)} {2 l - 3} cdots frac 2 3}right) int_{-1}^1 , mathrm d x$$
and noting that
$$ frac {2 l} {2 l + 1} frac {2 left({l-1}right) } {2 l - 1} frac {2 left({l - 2}right)} {2 l - 3} cdots frac 2 3= frac {2^l l!} {left({2 l + 1}right) left({2 l - 1}right) left({2 l - 3}right) cdots 3}
= frac{2^l l!} {frac {left({2 l + 1}right)!} {2^l l!} }
= frac {2^{2 l} left({l!}right)^2} {left({2 l + 1}right)!}
$$
it follows that
$$mathcal B_l=int_{-1}^1 left({x^2 - 1}right)^l mathrm d x = left({-1}right)^l frac{2^{2l+1} left({l!}right)^2} {left({2l+1}right) !}$$
Therefore we have
$$mathcal A_{k l}^m =left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} mathcal B_l= delta _{k l} frac 2 {2 l + 1}
frac {left({l + m}right) !} {left({l - m}right)!}$$
that is
$$int_{-1}^1 P_k^m left({x}right) P_l^m left({x}right) , mathrm d x = delta _{k l} frac 2 {2 l + 1}
frac {left({l + m}right) !} {left({l - m}right)!}$$
Let be
$$mathcal A_{k l}^m = int_{-1}^1 P_k^m left({x}right) P_l^m left({x}right) , mathrm d x $$
where the associated Legendre functions are
$$P^m_l left({x}right) = left({1 - x^2}right)^{m/2} dfrac {mathrm d^m P_l left({x}right)} {mathrm d x^m}={left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k }qquad 0 le m le l$$
Thus we have
$$mathcal A_{k l}^m = frac 1 {2^{k + l} k! l!} int_{-1}^1 left({left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k}right) left({frac{mathrm d^{l + m} } {mathrm d x^{l + m} } left({x^2 - 1}right)^l }right) , mathrm d x$$
where $k$ and $l$ occur symmetrically.
Let $l ge k$.
We can integrate by parts $l + m$ times
$$int_{-1}^1 u v' mathrm d x = left.{u v}right|_{-1}^1 - int_{-1}^1 v u' mathrm d x$$
where $u = left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k$ and
$v' = frac {mathrm d^{l + m}} {mathrm d x^{l + m}} left({x^2 - 1}right)^l$
For each of the first $m$ integrations by parts, $u$ in the $left.{uv}right|_{-1}^1$ term contains the factor $left({1 - x^2}right)$, so the term vanishes.
For each of the remaining $l$ integrations, $v$ in that term contains the factor $left({x^2 - 1}right)$ so the term also vanishes.
This means
$$ mathcal A_{k l}^m = frac {left({-1}right)^{l + m} } {2^{k + l} k! l!} int_{-1}^1 left({x^2 - 1}right)^l frac {mathrm d^{l + m} } {mathrm d x^{l + m} } left({left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k }right) , mathrm d x$$
Expanding the second factor using Leibniz's Rule
$$frac {mathrm d^{l + m} } {mathrm d x^{l + m} } left({1 - x^2}right)^m frac {mathrm d^{k + m} } {mathrm d x^{k + m} } left({x^2 - 1}right)^k= sum_{r mathop = 0}^{l + m} binom {l + m} r
frac {mathrm d^r} {mathrm d x^r} left({1 - x^2}right)^m frac {mathrm d^{l + k + 2 m - r} } {mathrm d x^{l + k + 2 m - r} } left({x^2 - 1}right)^k$$
the leftmost derivative in the sum is non-zero only when $r le 2 m$ (remembering that $m le l$) and the other derivative is non-zero only when $k + l + 2 m - r le 2 k$, that is, when $r ge 2 m + l - k$.
Because $l ge k$, these two conditions imply that the only non-zero term in the sum occurs when $r = 2 m$ and $l = k$.
Thus
$$mathcal A_{k l}^m = left({-1}right)^l delta_{k l} frac {left({-1}right)^{l + m} } {2^{2 l} left({l!}right)^2}
binom {l + m} {2 m} int_{-1}^1 left({x^2 - 1}right)^l frac {mathrm d^{2 m} } {mathrm d x^{2 m} } left({1 - x^2}right)^m frac {mathrm d^{2 l} } {mathrm d x^{2 l} } left({1 - x^2}right)^l mathrm d x$$
where $delta_{k l}$ is the Kronecker Delta.
The factor $(-1)^l$ at the front of $mathcal A_{k l}^m$ comes from switching the sign of $x^2 - 1$ inside $left({x^2 - 1}right)^l$.
To evaluate the differentiated factors, expand $left({1 - x^2}right)^k$ using the Binomial Theorem
$$left({1 - x^2}right)^k = sum_{j mathop = 0}^k binom k j left({-1}right)^{k-j} x^{2 left({k-j}right)}$$
The only term that survives differentiation $2^k$ times is the $x^{2 k}$ term, which after differentiation gives
$$left({-1}right)^k binom k 0 2 k! = left({-1}right)^k left({2k}right)!$$
Therefore
$$mathcal A_{k l}^m = left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} int_{-1}^1 left({x^2 - 1}right)^l mathrm d x =left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} mathcal B_l$$
The integral
$$mathcal B_l=int_{-1}^1 left({x^2 - 1}right)^l mathrm d x$$
can be evaluated by a change of variable $x = cos theta$
Thus
$$mathcal B_l= left({-1}right)^{l + 1} int_pi^0 left({sin theta }right)^{2 l + 1} , mathrm d theta=left({-1}right)^{l} int_0^pi left({sin theta }right)^{2 l + 1} , mathrm d theta$$
Integration of
$$frac {mathrm d left({sin^{n - 1} theta cos theta}right)} {mathrm d theta} = left({n-1}right) sin^{n-2} theta - n sin^n theta$$
gives
$$int_0^pi sin^n theta , mathrm d theta = frac {left.{-sin^{n - 1} theta cos theta}right|_0^pi} n + frac {left({n - 1}right)} n int_0^pi sin^{n - 2} theta , mathrm d theta= frac {left({n - 1}right)} n int_0^pi sin ^{n - 2} theta , mathrm d theta$$
since
$displaystyle left.{-sin^{n-1} theta cos theta}right|_0^pi = 0$ for $n > 1$.
Applying this result to $int_0^pi left({sin theta }right)^{2 l + 1} , mathrm d theta$ and changing the variable back to $x$ yields:
$$int_{-1}^1 left({x^2 - 1}right)^l , mathrm d x = - frac {2 l} {2 l + 1} int_{-1}^1 left({x^2 - 1}right)^{l - 1} , mathrm d xquadtext{for};l ge 1$$
Using this recursively
$$displaystyle int_{-1}^1 left({x^2 - 1}right)^l , mathrm d x = left({-1}right)^l left({frac {2 l} {2 l + 1} frac {2 left({l - 1}right)} {2 l - 1} frac {2 left({l - 2}right)} {2 l - 3} cdots frac 2 3}right) int_{-1}^1 , mathrm d x$$
and noting that
$$ frac {2 l} {2 l + 1} frac {2 left({l-1}right) } {2 l - 1} frac {2 left({l - 2}right)} {2 l - 3} cdots frac 2 3= frac {2^l l!} {left({2 l + 1}right) left({2 l - 1}right) left({2 l - 3}right) cdots 3}
= frac{2^l l!} {frac {left({2 l + 1}right)!} {2^l l!} }
= frac {2^{2 l} left({l!}right)^2} {left({2 l + 1}right)!}
$$
it follows that
$$mathcal B_l=int_{-1}^1 left({x^2 - 1}right)^l mathrm d x = left({-1}right)^l frac{2^{2l+1} left({l!}right)^2} {left({2l+1}right) !}$$
Therefore we have
$$mathcal A_{k l}^m =left({-1}right)^l delta_{k l} frac 1 {2^{2 l} left({l!}right)^2} frac {left({2 l}right)! left({l + m}right)!} {left({l - m}right)!} mathcal B_l= delta _{k l} frac 2 {2 l + 1}
frac {left({l + m}right) !} {left({l - m}right)!}$$
that is
$$int_{-1}^1 P_k^m left({x}right) P_l^m left({x}right) , mathrm d x = delta _{k l} frac 2 {2 l + 1}
frac {left({l + m}right) !} {left({l - m}right)!}$$
answered Apr 11 '16 at 13:12
alexjo
12.2k1329
12.2k1329
In your second equation you have a "$k$" which is on the right side but not in the left, and $k$ is not a dummy variable. Did you copy this from some source? What is "k" there? how do you justify changing the power from $m/2$ to $m$?
– Herman Jaramillo
Apr 7 '17 at 0:35
It seems that you are using Rodriguez's formula but if so, then you are forgetting the $1/(2^k k!)$ factor....
– Herman Jaramillo
Apr 7 '17 at 0:41
I think I know what happened. You forgot to write the $P_k^m(x)$ factor on the left (and the coefficients of the Rodriguez's formula).
– Herman Jaramillo
Apr 7 '17 at 0:49
add a comment |
In your second equation you have a "$k$" which is on the right side but not in the left, and $k$ is not a dummy variable. Did you copy this from some source? What is "k" there? how do you justify changing the power from $m/2$ to $m$?
– Herman Jaramillo
Apr 7 '17 at 0:35
It seems that you are using Rodriguez's formula but if so, then you are forgetting the $1/(2^k k!)$ factor....
– Herman Jaramillo
Apr 7 '17 at 0:41
I think I know what happened. You forgot to write the $P_k^m(x)$ factor on the left (and the coefficients of the Rodriguez's formula).
– Herman Jaramillo
Apr 7 '17 at 0:49
In your second equation you have a "$k$" which is on the right side but not in the left, and $k$ is not a dummy variable. Did you copy this from some source? What is "k" there? how do you justify changing the power from $m/2$ to $m$?
– Herman Jaramillo
Apr 7 '17 at 0:35
In your second equation you have a "$k$" which is on the right side but not in the left, and $k$ is not a dummy variable. Did you copy this from some source? What is "k" there? how do you justify changing the power from $m/2$ to $m$?
– Herman Jaramillo
Apr 7 '17 at 0:35
It seems that you are using Rodriguez's formula but if so, then you are forgetting the $1/(2^k k!)$ factor....
– Herman Jaramillo
Apr 7 '17 at 0:41
It seems that you are using Rodriguez's formula but if so, then you are forgetting the $1/(2^k k!)$ factor....
– Herman Jaramillo
Apr 7 '17 at 0:41
I think I know what happened. You forgot to write the $P_k^m(x)$ factor on the left (and the coefficients of the Rodriguez's formula).
– Herman Jaramillo
Apr 7 '17 at 0:49
I think I know what happened. You forgot to write the $P_k^m(x)$ factor on the left (and the coefficients of the Rodriguez's formula).
– Herman Jaramillo
Apr 7 '17 at 0:49
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1737301%2fassociated-legendre-polynomials-orthogonality-proof-int-11-p-kmx-cdot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown