A Series for $pi$












7












$begingroup$



Question: Can we show that $$sum_{n=0}^infty(-1)^{n+1}frac{(2n-3)!!}{(2n+3)!!}=frac{pi}{8} $$ ?






According to wolfram alpha this result is true.



Just amateur curiosity, not sure of a starting point to show if this true.










share|cite|improve this question









$endgroup$












  • $begingroup$
    For my own amusement, I will choose to believe this user is actually Sarah Silverman, the actress and comedian.
    $endgroup$
    – The Count
    Dec 30 '18 at 23:36
















7












$begingroup$



Question: Can we show that $$sum_{n=0}^infty(-1)^{n+1}frac{(2n-3)!!}{(2n+3)!!}=frac{pi}{8} $$ ?






According to wolfram alpha this result is true.



Just amateur curiosity, not sure of a starting point to show if this true.










share|cite|improve this question









$endgroup$












  • $begingroup$
    For my own amusement, I will choose to believe this user is actually Sarah Silverman, the actress and comedian.
    $endgroup$
    – The Count
    Dec 30 '18 at 23:36














7












7








7


4



$begingroup$



Question: Can we show that $$sum_{n=0}^infty(-1)^{n+1}frac{(2n-3)!!}{(2n+3)!!}=frac{pi}{8} $$ ?






According to wolfram alpha this result is true.



Just amateur curiosity, not sure of a starting point to show if this true.










share|cite|improve this question









$endgroup$





Question: Can we show that $$sum_{n=0}^infty(-1)^{n+1}frac{(2n-3)!!}{(2n+3)!!}=frac{pi}{8} $$ ?






According to wolfram alpha this result is true.



Just amateur curiosity, not sure of a starting point to show if this true.







calculus sequences-and-series pi






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 30 '18 at 23:18









S. SilvermanS. Silverman

497




497












  • $begingroup$
    For my own amusement, I will choose to believe this user is actually Sarah Silverman, the actress and comedian.
    $endgroup$
    – The Count
    Dec 30 '18 at 23:36


















  • $begingroup$
    For my own amusement, I will choose to believe this user is actually Sarah Silverman, the actress and comedian.
    $endgroup$
    – The Count
    Dec 30 '18 at 23:36
















$begingroup$
For my own amusement, I will choose to believe this user is actually Sarah Silverman, the actress and comedian.
$endgroup$
– The Count
Dec 30 '18 at 23:36




$begingroup$
For my own amusement, I will choose to believe this user is actually Sarah Silverman, the actress and comedian.
$endgroup$
– The Count
Dec 30 '18 at 23:36










2 Answers
2






active

oldest

votes


















16












$begingroup$

Note that after cancellation we have



$$frac{(2n-3)!!}{(2n+3)!!}=frac{1}{(2n-1)(2n+1)(2n+3)}$$



Taking partial fractions gives
$$
frac{1}{(2n-1)(2n+1)(2n+3)}=frac{1}{8}left(-frac{1}{2n-1}+frac{2}{2n+1}-frac{1}{2n+3}right)
$$



Now, the standard arctangent series for $pi$ gives $sum_{n=0}^infty (-1)^n frac{1}{2n+1}=frac{pi}{4}$. So
$$sum_{n=0}^infty (-1)^n frac{1}{2n-1}=-sum_{n=-1}^infty (-1)^n frac{1}{2n+1}=-1-frac{pi}{4}$$
$$
sum_{n=0}^infty (-1)^n frac{1}{2n-3}=-sum_{n=1}^infty (-1)^n frac{1}{2n+1}=1-frac{pi}{4}
$$

which means that when we combine all three infinite sums we get
$$
frac{1}{8}left[-left(-1-frac{pi}{4}right)+2left(frac{pi}{4}right)-left(1-frac{pi}{4}right)right]=frac{pi}{8}
$$

as desired.



(This solution makes it obvious that the sum should be of the form $a+bpi$ with $a$ and $b$ rational, but makes the cancellation of the rational term look somewhat coincidental. I would be curious to know if there's a different way of doing it which more clearly demonstrates why the sum ends up being a rational multiple of $pi$.)






share|cite|improve this answer











$endgroup$





















    3












    $begingroup$

    Considering the simplicity of Micah's answer, I am ashamed to provide this complex one.



    Let
    $$S_p(x)=sum_{n=0}^p(-1)^{n+1}frac{(2n-3)!!}{(2n+3)!!}x^p$$ It write
    $$S_p(x)=frac{left(8 p^3+36 p^2+46 p+15right) ,
    _2F_1left(-frac{1}{2},1;frac{5}{2};-xright)+3 (-x)^{p+1} ,
    _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-xright)}{3 left(8 p^3+36 p^2+46
    p+15right)}$$
    Using
    $$,
    _2F_1left(-frac{1}{2},1;frac{5}{2};-1right)=frac{3 pi }{8}$$
    then
    $$S_p(1)=frac{pi left(8 p^3+36 p^2+46 p+15right)-8 (-1)^p ,
    _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)}{8 left(8 p^3+36 p^2+46
    p+15right)}$$
    that it to say
    $$S_p(1)=frac pi 8-frac{(-1)^p }{8 p^3+36
    p^2+46 p+15}, _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)$$
    and $, _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)$ looks like an hyperbolic function going asymptotically to $frac 12$.



    Then $S_infty(1)=frac{ pi }{8}$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057278%2fa-series-for-pi%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      16












      $begingroup$

      Note that after cancellation we have



      $$frac{(2n-3)!!}{(2n+3)!!}=frac{1}{(2n-1)(2n+1)(2n+3)}$$



      Taking partial fractions gives
      $$
      frac{1}{(2n-1)(2n+1)(2n+3)}=frac{1}{8}left(-frac{1}{2n-1}+frac{2}{2n+1}-frac{1}{2n+3}right)
      $$



      Now, the standard arctangent series for $pi$ gives $sum_{n=0}^infty (-1)^n frac{1}{2n+1}=frac{pi}{4}$. So
      $$sum_{n=0}^infty (-1)^n frac{1}{2n-1}=-sum_{n=-1}^infty (-1)^n frac{1}{2n+1}=-1-frac{pi}{4}$$
      $$
      sum_{n=0}^infty (-1)^n frac{1}{2n-3}=-sum_{n=1}^infty (-1)^n frac{1}{2n+1}=1-frac{pi}{4}
      $$

      which means that when we combine all three infinite sums we get
      $$
      frac{1}{8}left[-left(-1-frac{pi}{4}right)+2left(frac{pi}{4}right)-left(1-frac{pi}{4}right)right]=frac{pi}{8}
      $$

      as desired.



      (This solution makes it obvious that the sum should be of the form $a+bpi$ with $a$ and $b$ rational, but makes the cancellation of the rational term look somewhat coincidental. I would be curious to know if there's a different way of doing it which more clearly demonstrates why the sum ends up being a rational multiple of $pi$.)






      share|cite|improve this answer











      $endgroup$


















        16












        $begingroup$

        Note that after cancellation we have



        $$frac{(2n-3)!!}{(2n+3)!!}=frac{1}{(2n-1)(2n+1)(2n+3)}$$



        Taking partial fractions gives
        $$
        frac{1}{(2n-1)(2n+1)(2n+3)}=frac{1}{8}left(-frac{1}{2n-1}+frac{2}{2n+1}-frac{1}{2n+3}right)
        $$



        Now, the standard arctangent series for $pi$ gives $sum_{n=0}^infty (-1)^n frac{1}{2n+1}=frac{pi}{4}$. So
        $$sum_{n=0}^infty (-1)^n frac{1}{2n-1}=-sum_{n=-1}^infty (-1)^n frac{1}{2n+1}=-1-frac{pi}{4}$$
        $$
        sum_{n=0}^infty (-1)^n frac{1}{2n-3}=-sum_{n=1}^infty (-1)^n frac{1}{2n+1}=1-frac{pi}{4}
        $$

        which means that when we combine all three infinite sums we get
        $$
        frac{1}{8}left[-left(-1-frac{pi}{4}right)+2left(frac{pi}{4}right)-left(1-frac{pi}{4}right)right]=frac{pi}{8}
        $$

        as desired.



        (This solution makes it obvious that the sum should be of the form $a+bpi$ with $a$ and $b$ rational, but makes the cancellation of the rational term look somewhat coincidental. I would be curious to know if there's a different way of doing it which more clearly demonstrates why the sum ends up being a rational multiple of $pi$.)






        share|cite|improve this answer











        $endgroup$
















          16












          16








          16





          $begingroup$

          Note that after cancellation we have



          $$frac{(2n-3)!!}{(2n+3)!!}=frac{1}{(2n-1)(2n+1)(2n+3)}$$



          Taking partial fractions gives
          $$
          frac{1}{(2n-1)(2n+1)(2n+3)}=frac{1}{8}left(-frac{1}{2n-1}+frac{2}{2n+1}-frac{1}{2n+3}right)
          $$



          Now, the standard arctangent series for $pi$ gives $sum_{n=0}^infty (-1)^n frac{1}{2n+1}=frac{pi}{4}$. So
          $$sum_{n=0}^infty (-1)^n frac{1}{2n-1}=-sum_{n=-1}^infty (-1)^n frac{1}{2n+1}=-1-frac{pi}{4}$$
          $$
          sum_{n=0}^infty (-1)^n frac{1}{2n-3}=-sum_{n=1}^infty (-1)^n frac{1}{2n+1}=1-frac{pi}{4}
          $$

          which means that when we combine all three infinite sums we get
          $$
          frac{1}{8}left[-left(-1-frac{pi}{4}right)+2left(frac{pi}{4}right)-left(1-frac{pi}{4}right)right]=frac{pi}{8}
          $$

          as desired.



          (This solution makes it obvious that the sum should be of the form $a+bpi$ with $a$ and $b$ rational, but makes the cancellation of the rational term look somewhat coincidental. I would be curious to know if there's a different way of doing it which more clearly demonstrates why the sum ends up being a rational multiple of $pi$.)






          share|cite|improve this answer











          $endgroup$



          Note that after cancellation we have



          $$frac{(2n-3)!!}{(2n+3)!!}=frac{1}{(2n-1)(2n+1)(2n+3)}$$



          Taking partial fractions gives
          $$
          frac{1}{(2n-1)(2n+1)(2n+3)}=frac{1}{8}left(-frac{1}{2n-1}+frac{2}{2n+1}-frac{1}{2n+3}right)
          $$



          Now, the standard arctangent series for $pi$ gives $sum_{n=0}^infty (-1)^n frac{1}{2n+1}=frac{pi}{4}$. So
          $$sum_{n=0}^infty (-1)^n frac{1}{2n-1}=-sum_{n=-1}^infty (-1)^n frac{1}{2n+1}=-1-frac{pi}{4}$$
          $$
          sum_{n=0}^infty (-1)^n frac{1}{2n-3}=-sum_{n=1}^infty (-1)^n frac{1}{2n+1}=1-frac{pi}{4}
          $$

          which means that when we combine all three infinite sums we get
          $$
          frac{1}{8}left[-left(-1-frac{pi}{4}right)+2left(frac{pi}{4}right)-left(1-frac{pi}{4}right)right]=frac{pi}{8}
          $$

          as desired.



          (This solution makes it obvious that the sum should be of the form $a+bpi$ with $a$ and $b$ rational, but makes the cancellation of the rational term look somewhat coincidental. I would be curious to know if there's a different way of doing it which more clearly demonstrates why the sum ends up being a rational multiple of $pi$.)







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 30 '18 at 23:37

























          answered Dec 30 '18 at 23:31









          MicahMicah

          30.2k1364106




          30.2k1364106























              3












              $begingroup$

              Considering the simplicity of Micah's answer, I am ashamed to provide this complex one.



              Let
              $$S_p(x)=sum_{n=0}^p(-1)^{n+1}frac{(2n-3)!!}{(2n+3)!!}x^p$$ It write
              $$S_p(x)=frac{left(8 p^3+36 p^2+46 p+15right) ,
              _2F_1left(-frac{1}{2},1;frac{5}{2};-xright)+3 (-x)^{p+1} ,
              _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-xright)}{3 left(8 p^3+36 p^2+46
              p+15right)}$$
              Using
              $$,
              _2F_1left(-frac{1}{2},1;frac{5}{2};-1right)=frac{3 pi }{8}$$
              then
              $$S_p(1)=frac{pi left(8 p^3+36 p^2+46 p+15right)-8 (-1)^p ,
              _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)}{8 left(8 p^3+36 p^2+46
              p+15right)}$$
              that it to say
              $$S_p(1)=frac pi 8-frac{(-1)^p }{8 p^3+36
              p^2+46 p+15}, _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)$$
              and $, _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)$ looks like an hyperbolic function going asymptotically to $frac 12$.



              Then $S_infty(1)=frac{ pi }{8}$.






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                Considering the simplicity of Micah's answer, I am ashamed to provide this complex one.



                Let
                $$S_p(x)=sum_{n=0}^p(-1)^{n+1}frac{(2n-3)!!}{(2n+3)!!}x^p$$ It write
                $$S_p(x)=frac{left(8 p^3+36 p^2+46 p+15right) ,
                _2F_1left(-frac{1}{2},1;frac{5}{2};-xright)+3 (-x)^{p+1} ,
                _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-xright)}{3 left(8 p^3+36 p^2+46
                p+15right)}$$
                Using
                $$,
                _2F_1left(-frac{1}{2},1;frac{5}{2};-1right)=frac{3 pi }{8}$$
                then
                $$S_p(1)=frac{pi left(8 p^3+36 p^2+46 p+15right)-8 (-1)^p ,
                _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)}{8 left(8 p^3+36 p^2+46
                p+15right)}$$
                that it to say
                $$S_p(1)=frac pi 8-frac{(-1)^p }{8 p^3+36
                p^2+46 p+15}, _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)$$
                and $, _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)$ looks like an hyperbolic function going asymptotically to $frac 12$.



                Then $S_infty(1)=frac{ pi }{8}$.






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Considering the simplicity of Micah's answer, I am ashamed to provide this complex one.



                  Let
                  $$S_p(x)=sum_{n=0}^p(-1)^{n+1}frac{(2n-3)!!}{(2n+3)!!}x^p$$ It write
                  $$S_p(x)=frac{left(8 p^3+36 p^2+46 p+15right) ,
                  _2F_1left(-frac{1}{2},1;frac{5}{2};-xright)+3 (-x)^{p+1} ,
                  _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-xright)}{3 left(8 p^3+36 p^2+46
                  p+15right)}$$
                  Using
                  $$,
                  _2F_1left(-frac{1}{2},1;frac{5}{2};-1right)=frac{3 pi }{8}$$
                  then
                  $$S_p(1)=frac{pi left(8 p^3+36 p^2+46 p+15right)-8 (-1)^p ,
                  _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)}{8 left(8 p^3+36 p^2+46
                  p+15right)}$$
                  that it to say
                  $$S_p(1)=frac pi 8-frac{(-1)^p }{8 p^3+36
                  p^2+46 p+15}, _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)$$
                  and $, _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)$ looks like an hyperbolic function going asymptotically to $frac 12$.



                  Then $S_infty(1)=frac{ pi }{8}$.






                  share|cite|improve this answer









                  $endgroup$



                  Considering the simplicity of Micah's answer, I am ashamed to provide this complex one.



                  Let
                  $$S_p(x)=sum_{n=0}^p(-1)^{n+1}frac{(2n-3)!!}{(2n+3)!!}x^p$$ It write
                  $$S_p(x)=frac{left(8 p^3+36 p^2+46 p+15right) ,
                  _2F_1left(-frac{1}{2},1;frac{5}{2};-xright)+3 (-x)^{p+1} ,
                  _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-xright)}{3 left(8 p^3+36 p^2+46
                  p+15right)}$$
                  Using
                  $$,
                  _2F_1left(-frac{1}{2},1;frac{5}{2};-1right)=frac{3 pi }{8}$$
                  then
                  $$S_p(1)=frac{pi left(8 p^3+36 p^2+46 p+15right)-8 (-1)^p ,
                  _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)}{8 left(8 p^3+36 p^2+46
                  p+15right)}$$
                  that it to say
                  $$S_p(1)=frac pi 8-frac{(-1)^p }{8 p^3+36
                  p^2+46 p+15}, _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)$$
                  and $, _2F_1left(1,p+frac{1}{2};p+frac{7}{2};-1right)$ looks like an hyperbolic function going asymptotically to $frac 12$.



                  Then $S_infty(1)=frac{ pi }{8}$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 31 '18 at 4:34









                  Claude LeiboviciClaude Leibovici

                  123k1157134




                  123k1157134






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057278%2fa-series-for-pi%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna