if $x-y =sqrt{x}-sqrt{y}$ with $xneq y$ then $(1+frac{1}{x})(1+frac{1}{y})geq 25$?












2












$begingroup$


let $xneq y$ be positive real numbers such that :$x-y= sqrt{x}-sqrt{y}$ , I have tried to prove this inequality $(1+frac{1}{x})(1+frac{1}{y})geq 25$ that i have created but i didn't got it.



Attempt I have showed that:$(frac{1}{x}+frac{1}{y})geq frac{2}{sqrt{xy}}$ using this identity: $(sqrt{x}-sqrt{y})^2geq0$ , I also showed that :$frac{1}{xy}geq frac{1}{16}$ , Now I have used both result I have got the following inequality :$(1+frac{y}{x})(1+frac{x}{y})geq 25$ but not what i have claimed , any way ?










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    I am missing something or the inequality is false for $x =y=1$ whike the equality is true?
    $endgroup$
    – Tito Eliatron
    Dec 30 '18 at 22:51






  • 1




    $begingroup$
    If $x=y=1$, $x-y=sqrt x-sqrt y$, but $(1+{1over x})(1+{1over y})=4$, which is not greater than or equal to 25.
    $endgroup$
    – Steve Kass
    Dec 30 '18 at 22:51






  • 1




    $begingroup$
    Tkae $;x=y=1;$ as an easy counter example....
    $endgroup$
    – DonAntonio
    Dec 30 '18 at 22:51








  • 2




    $begingroup$
    If you omit $x=y$ as solutions, then your condition is equivalent to $sqrt{x}+sqrt{y}=1$.
    $endgroup$
    – Cheerful Parsnip
    Dec 30 '18 at 22:52






  • 1




    $begingroup$
    @TitoEliatron you mean $sqrt x+sqrt y=1$
    $endgroup$
    – Mark Bennet
    Dec 30 '18 at 23:04
















2












$begingroup$


let $xneq y$ be positive real numbers such that :$x-y= sqrt{x}-sqrt{y}$ , I have tried to prove this inequality $(1+frac{1}{x})(1+frac{1}{y})geq 25$ that i have created but i didn't got it.



Attempt I have showed that:$(frac{1}{x}+frac{1}{y})geq frac{2}{sqrt{xy}}$ using this identity: $(sqrt{x}-sqrt{y})^2geq0$ , I also showed that :$frac{1}{xy}geq frac{1}{16}$ , Now I have used both result I have got the following inequality :$(1+frac{y}{x})(1+frac{x}{y})geq 25$ but not what i have claimed , any way ?










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    I am missing something or the inequality is false for $x =y=1$ whike the equality is true?
    $endgroup$
    – Tito Eliatron
    Dec 30 '18 at 22:51






  • 1




    $begingroup$
    If $x=y=1$, $x-y=sqrt x-sqrt y$, but $(1+{1over x})(1+{1over y})=4$, which is not greater than or equal to 25.
    $endgroup$
    – Steve Kass
    Dec 30 '18 at 22:51






  • 1




    $begingroup$
    Tkae $;x=y=1;$ as an easy counter example....
    $endgroup$
    – DonAntonio
    Dec 30 '18 at 22:51








  • 2




    $begingroup$
    If you omit $x=y$ as solutions, then your condition is equivalent to $sqrt{x}+sqrt{y}=1$.
    $endgroup$
    – Cheerful Parsnip
    Dec 30 '18 at 22:52






  • 1




    $begingroup$
    @TitoEliatron you mean $sqrt x+sqrt y=1$
    $endgroup$
    – Mark Bennet
    Dec 30 '18 at 23:04














2












2








2


1



$begingroup$


let $xneq y$ be positive real numbers such that :$x-y= sqrt{x}-sqrt{y}$ , I have tried to prove this inequality $(1+frac{1}{x})(1+frac{1}{y})geq 25$ that i have created but i didn't got it.



Attempt I have showed that:$(frac{1}{x}+frac{1}{y})geq frac{2}{sqrt{xy}}$ using this identity: $(sqrt{x}-sqrt{y})^2geq0$ , I also showed that :$frac{1}{xy}geq frac{1}{16}$ , Now I have used both result I have got the following inequality :$(1+frac{y}{x})(1+frac{x}{y})geq 25$ but not what i have claimed , any way ?










share|cite|improve this question











$endgroup$




let $xneq y$ be positive real numbers such that :$x-y= sqrt{x}-sqrt{y}$ , I have tried to prove this inequality $(1+frac{1}{x})(1+frac{1}{y})geq 25$ that i have created but i didn't got it.



Attempt I have showed that:$(frac{1}{x}+frac{1}{y})geq frac{2}{sqrt{xy}}$ using this identity: $(sqrt{x}-sqrt{y})^2geq0$ , I also showed that :$frac{1}{xy}geq frac{1}{16}$ , Now I have used both result I have got the following inequality :$(1+frac{y}{x})(1+frac{x}{y})geq 25$ but not what i have claimed , any way ?







real-analysis inequality a.m.-g.m.-inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 31 '18 at 4:21









Michael Rozenberg

105k1893198




105k1893198










asked Dec 30 '18 at 22:44









zeraoulia rafikzeraoulia rafik

2,41611030




2,41611030








  • 3




    $begingroup$
    I am missing something or the inequality is false for $x =y=1$ whike the equality is true?
    $endgroup$
    – Tito Eliatron
    Dec 30 '18 at 22:51






  • 1




    $begingroup$
    If $x=y=1$, $x-y=sqrt x-sqrt y$, but $(1+{1over x})(1+{1over y})=4$, which is not greater than or equal to 25.
    $endgroup$
    – Steve Kass
    Dec 30 '18 at 22:51






  • 1




    $begingroup$
    Tkae $;x=y=1;$ as an easy counter example....
    $endgroup$
    – DonAntonio
    Dec 30 '18 at 22:51








  • 2




    $begingroup$
    If you omit $x=y$ as solutions, then your condition is equivalent to $sqrt{x}+sqrt{y}=1$.
    $endgroup$
    – Cheerful Parsnip
    Dec 30 '18 at 22:52






  • 1




    $begingroup$
    @TitoEliatron you mean $sqrt x+sqrt y=1$
    $endgroup$
    – Mark Bennet
    Dec 30 '18 at 23:04














  • 3




    $begingroup$
    I am missing something or the inequality is false for $x =y=1$ whike the equality is true?
    $endgroup$
    – Tito Eliatron
    Dec 30 '18 at 22:51






  • 1




    $begingroup$
    If $x=y=1$, $x-y=sqrt x-sqrt y$, but $(1+{1over x})(1+{1over y})=4$, which is not greater than or equal to 25.
    $endgroup$
    – Steve Kass
    Dec 30 '18 at 22:51






  • 1




    $begingroup$
    Tkae $;x=y=1;$ as an easy counter example....
    $endgroup$
    – DonAntonio
    Dec 30 '18 at 22:51








  • 2




    $begingroup$
    If you omit $x=y$ as solutions, then your condition is equivalent to $sqrt{x}+sqrt{y}=1$.
    $endgroup$
    – Cheerful Parsnip
    Dec 30 '18 at 22:52






  • 1




    $begingroup$
    @TitoEliatron you mean $sqrt x+sqrt y=1$
    $endgroup$
    – Mark Bennet
    Dec 30 '18 at 23:04








3




3




$begingroup$
I am missing something or the inequality is false for $x =y=1$ whike the equality is true?
$endgroup$
– Tito Eliatron
Dec 30 '18 at 22:51




$begingroup$
I am missing something or the inequality is false for $x =y=1$ whike the equality is true?
$endgroup$
– Tito Eliatron
Dec 30 '18 at 22:51




1




1




$begingroup$
If $x=y=1$, $x-y=sqrt x-sqrt y$, but $(1+{1over x})(1+{1over y})=4$, which is not greater than or equal to 25.
$endgroup$
– Steve Kass
Dec 30 '18 at 22:51




$begingroup$
If $x=y=1$, $x-y=sqrt x-sqrt y$, but $(1+{1over x})(1+{1over y})=4$, which is not greater than or equal to 25.
$endgroup$
– Steve Kass
Dec 30 '18 at 22:51




1




1




$begingroup$
Tkae $;x=y=1;$ as an easy counter example....
$endgroup$
– DonAntonio
Dec 30 '18 at 22:51






$begingroup$
Tkae $;x=y=1;$ as an easy counter example....
$endgroup$
– DonAntonio
Dec 30 '18 at 22:51






2




2




$begingroup$
If you omit $x=y$ as solutions, then your condition is equivalent to $sqrt{x}+sqrt{y}=1$.
$endgroup$
– Cheerful Parsnip
Dec 30 '18 at 22:52




$begingroup$
If you omit $x=y$ as solutions, then your condition is equivalent to $sqrt{x}+sqrt{y}=1$.
$endgroup$
– Cheerful Parsnip
Dec 30 '18 at 22:52




1




1




$begingroup$
@TitoEliatron you mean $sqrt x+sqrt y=1$
$endgroup$
– Mark Bennet
Dec 30 '18 at 23:04




$begingroup$
@TitoEliatron you mean $sqrt x+sqrt y=1$
$endgroup$
– Mark Bennet
Dec 30 '18 at 23:04










4 Answers
4






active

oldest

votes


















8












$begingroup$

Following the hints of the comments, your condition implies that
$$sqrt{x} + sqrt{y} = 1$$
AM-GM states
$$1 geq 2sqrt{sqrt{xy}} implies 1/4 geq sqrt{xy}$$
Use Cauchy on
$$(1+1/x)(1+1/y) geq (1+1/sqrt{xy})^2$$
Pluggin in what you got in the AM-GM for $sqrt{xy}$,
$$geq (1+ 4)^2 =25$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Just to give a different approach, let $x=1/u^2$ and $y=1/v^2$ with $u,vgt0$. Then



    $$begin{align}
    x-sqrt x=y-sqrt y
    &implies{1over u^2}-{1over v^2}={1over u}-{1over v}\
    &implies{(v-u)(v+u)over u^2v^2}={v-uover uv}\
    &implies{v+uover uv}=1\
    &implies{1over u}+{1over v}=1
    end{align}$$



    provided $unot=v$ (i.e., provided $xnot=y$), which allows the cancellation of the $v-u$ term. Note this now requires $u,vgt1$. We also have



    $${v+uover uv}=1implies uv=u+vimplies u^2v^2=(v+u)^2=u^2+v^2+2uv=u^2+v^2+2u+2v$$



    It follows that



    $$begin{align}
    left(1+{1over x}right)left(1+{1over y}right)
    &=(1+u^2)(1+v^2)\
    &=1+u^2+v^2+u^2v^2\
    &=1+2u^2+2v^2+2u+2v\
    &={(2u+1)^2+(2v+1)^2over2}\
    &gt{(2cdot1+1)^2+(2cdot1+1)^2over2}\
    &=25
    end{align}$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      By AM-GM
      $$left(1+frac{1}{x}right)left(1+frac{1}{y}right)=left(1+frac{4}{4x}right)left(1+frac{4}{4y}right)geq$$
      $$geqfrac{5}{sqrt[5]{(4x)^4}}cdotfrac{5}{sqrt[5]{(4y)^4}}=frac{25}{sqrt[5]{4^{8}left(sqrt{xy}right)^8}}geqfrac{5}{sqrt[5]{4^8left(frac{sqrt{x}+sqrt{y}}{2}right)^{16}}}=25.$$






      share|cite|improve this answer









      $endgroup$





















        1












        $begingroup$

        The function
        $$ymapsto logleft(1+tfrac{1}{y^2}right)$$
        is convex on $(0,infty)$, so Jensen's inequality
        $$mathrm{E}left[,logleft(1+tfrac{1}{Y^2}right)right]geq logleft(1+tfrac{1}{mathrm{E}[Y]^2}right)$$
        holds for any positive random variable $Y$. Letting $Y=sqrt{X}$, in particular we have
        $$mathrm{E}left[,logleft(1+tfrac{1}{X}right)right]geq logleft(1+tfrac{1}{mathrm{E}[sqrt{X}]^2}right)$$
        for any positive random variable $X$.



        Now, let $X$ be a categorical variable taking on the $N$ positive values $x_0,x_1,ldots,x_{N-1}$ with equal probability $tfrac{1}{N}$, and suppose that
        $$mathrm{E}[sqrt{X}]=frac{1}{N}sum_{i=0}^{N-1}sqrt{x_i}=frac{1}{N}text{.}$$
        Then the inequality above is



        $$frac{1}{N}sum_{i=0}^{N-1}logleft(1+tfrac{1}{x_i}right)geq log(1+N^2)text{;}$$
        taking exponentials, we have shown that
        $$boxed{sum_{i=0}^{N-1}sqrt{x_i}=1Rightarrowprod_{i=0}^{N-1}left(1+tfrac{1}{x_i}right)geq (1+N^2)^N }text{.}$$
        OP's inequality is the case $N=2$.






        share|cite|improve this answer









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057254%2fif-x-y-sqrtx-sqrty-with-x-neq-y-then-1-frac1x1-frac1y%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          8












          $begingroup$

          Following the hints of the comments, your condition implies that
          $$sqrt{x} + sqrt{y} = 1$$
          AM-GM states
          $$1 geq 2sqrt{sqrt{xy}} implies 1/4 geq sqrt{xy}$$
          Use Cauchy on
          $$(1+1/x)(1+1/y) geq (1+1/sqrt{xy})^2$$
          Pluggin in what you got in the AM-GM for $sqrt{xy}$,
          $$geq (1+ 4)^2 =25$$






          share|cite|improve this answer









          $endgroup$


















            8












            $begingroup$

            Following the hints of the comments, your condition implies that
            $$sqrt{x} + sqrt{y} = 1$$
            AM-GM states
            $$1 geq 2sqrt{sqrt{xy}} implies 1/4 geq sqrt{xy}$$
            Use Cauchy on
            $$(1+1/x)(1+1/y) geq (1+1/sqrt{xy})^2$$
            Pluggin in what you got in the AM-GM for $sqrt{xy}$,
            $$geq (1+ 4)^2 =25$$






            share|cite|improve this answer









            $endgroup$
















              8












              8








              8





              $begingroup$

              Following the hints of the comments, your condition implies that
              $$sqrt{x} + sqrt{y} = 1$$
              AM-GM states
              $$1 geq 2sqrt{sqrt{xy}} implies 1/4 geq sqrt{xy}$$
              Use Cauchy on
              $$(1+1/x)(1+1/y) geq (1+1/sqrt{xy})^2$$
              Pluggin in what you got in the AM-GM for $sqrt{xy}$,
              $$geq (1+ 4)^2 =25$$






              share|cite|improve this answer









              $endgroup$



              Following the hints of the comments, your condition implies that
              $$sqrt{x} + sqrt{y} = 1$$
              AM-GM states
              $$1 geq 2sqrt{sqrt{xy}} implies 1/4 geq sqrt{xy}$$
              Use Cauchy on
              $$(1+1/x)(1+1/y) geq (1+1/sqrt{xy})^2$$
              Pluggin in what you got in the AM-GM for $sqrt{xy}$,
              $$geq (1+ 4)^2 =25$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Dec 30 '18 at 23:30









              Jack FJack F

              1112




              1112























                  1












                  $begingroup$

                  Just to give a different approach, let $x=1/u^2$ and $y=1/v^2$ with $u,vgt0$. Then



                  $$begin{align}
                  x-sqrt x=y-sqrt y
                  &implies{1over u^2}-{1over v^2}={1over u}-{1over v}\
                  &implies{(v-u)(v+u)over u^2v^2}={v-uover uv}\
                  &implies{v+uover uv}=1\
                  &implies{1over u}+{1over v}=1
                  end{align}$$



                  provided $unot=v$ (i.e., provided $xnot=y$), which allows the cancellation of the $v-u$ term. Note this now requires $u,vgt1$. We also have



                  $${v+uover uv}=1implies uv=u+vimplies u^2v^2=(v+u)^2=u^2+v^2+2uv=u^2+v^2+2u+2v$$



                  It follows that



                  $$begin{align}
                  left(1+{1over x}right)left(1+{1over y}right)
                  &=(1+u^2)(1+v^2)\
                  &=1+u^2+v^2+u^2v^2\
                  &=1+2u^2+2v^2+2u+2v\
                  &={(2u+1)^2+(2v+1)^2over2}\
                  &gt{(2cdot1+1)^2+(2cdot1+1)^2over2}\
                  &=25
                  end{align}$$






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    Just to give a different approach, let $x=1/u^2$ and $y=1/v^2$ with $u,vgt0$. Then



                    $$begin{align}
                    x-sqrt x=y-sqrt y
                    &implies{1over u^2}-{1over v^2}={1over u}-{1over v}\
                    &implies{(v-u)(v+u)over u^2v^2}={v-uover uv}\
                    &implies{v+uover uv}=1\
                    &implies{1over u}+{1over v}=1
                    end{align}$$



                    provided $unot=v$ (i.e., provided $xnot=y$), which allows the cancellation of the $v-u$ term. Note this now requires $u,vgt1$. We also have



                    $${v+uover uv}=1implies uv=u+vimplies u^2v^2=(v+u)^2=u^2+v^2+2uv=u^2+v^2+2u+2v$$



                    It follows that



                    $$begin{align}
                    left(1+{1over x}right)left(1+{1over y}right)
                    &=(1+u^2)(1+v^2)\
                    &=1+u^2+v^2+u^2v^2\
                    &=1+2u^2+2v^2+2u+2v\
                    &={(2u+1)^2+(2v+1)^2over2}\
                    &gt{(2cdot1+1)^2+(2cdot1+1)^2over2}\
                    &=25
                    end{align}$$






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      Just to give a different approach, let $x=1/u^2$ and $y=1/v^2$ with $u,vgt0$. Then



                      $$begin{align}
                      x-sqrt x=y-sqrt y
                      &implies{1over u^2}-{1over v^2}={1over u}-{1over v}\
                      &implies{(v-u)(v+u)over u^2v^2}={v-uover uv}\
                      &implies{v+uover uv}=1\
                      &implies{1over u}+{1over v}=1
                      end{align}$$



                      provided $unot=v$ (i.e., provided $xnot=y$), which allows the cancellation of the $v-u$ term. Note this now requires $u,vgt1$. We also have



                      $${v+uover uv}=1implies uv=u+vimplies u^2v^2=(v+u)^2=u^2+v^2+2uv=u^2+v^2+2u+2v$$



                      It follows that



                      $$begin{align}
                      left(1+{1over x}right)left(1+{1over y}right)
                      &=(1+u^2)(1+v^2)\
                      &=1+u^2+v^2+u^2v^2\
                      &=1+2u^2+2v^2+2u+2v\
                      &={(2u+1)^2+(2v+1)^2over2}\
                      &gt{(2cdot1+1)^2+(2cdot1+1)^2over2}\
                      &=25
                      end{align}$$






                      share|cite|improve this answer









                      $endgroup$



                      Just to give a different approach, let $x=1/u^2$ and $y=1/v^2$ with $u,vgt0$. Then



                      $$begin{align}
                      x-sqrt x=y-sqrt y
                      &implies{1over u^2}-{1over v^2}={1over u}-{1over v}\
                      &implies{(v-u)(v+u)over u^2v^2}={v-uover uv}\
                      &implies{v+uover uv}=1\
                      &implies{1over u}+{1over v}=1
                      end{align}$$



                      provided $unot=v$ (i.e., provided $xnot=y$), which allows the cancellation of the $v-u$ term. Note this now requires $u,vgt1$. We also have



                      $${v+uover uv}=1implies uv=u+vimplies u^2v^2=(v+u)^2=u^2+v^2+2uv=u^2+v^2+2u+2v$$



                      It follows that



                      $$begin{align}
                      left(1+{1over x}right)left(1+{1over y}right)
                      &=(1+u^2)(1+v^2)\
                      &=1+u^2+v^2+u^2v^2\
                      &=1+2u^2+2v^2+2u+2v\
                      &={(2u+1)^2+(2v+1)^2over2}\
                      &gt{(2cdot1+1)^2+(2cdot1+1)^2over2}\
                      &=25
                      end{align}$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 31 '18 at 0:53









                      Barry CipraBarry Cipra

                      59.8k653126




                      59.8k653126























                          1












                          $begingroup$

                          By AM-GM
                          $$left(1+frac{1}{x}right)left(1+frac{1}{y}right)=left(1+frac{4}{4x}right)left(1+frac{4}{4y}right)geq$$
                          $$geqfrac{5}{sqrt[5]{(4x)^4}}cdotfrac{5}{sqrt[5]{(4y)^4}}=frac{25}{sqrt[5]{4^{8}left(sqrt{xy}right)^8}}geqfrac{5}{sqrt[5]{4^8left(frac{sqrt{x}+sqrt{y}}{2}right)^{16}}}=25.$$






                          share|cite|improve this answer









                          $endgroup$


















                            1












                            $begingroup$

                            By AM-GM
                            $$left(1+frac{1}{x}right)left(1+frac{1}{y}right)=left(1+frac{4}{4x}right)left(1+frac{4}{4y}right)geq$$
                            $$geqfrac{5}{sqrt[5]{(4x)^4}}cdotfrac{5}{sqrt[5]{(4y)^4}}=frac{25}{sqrt[5]{4^{8}left(sqrt{xy}right)^8}}geqfrac{5}{sqrt[5]{4^8left(frac{sqrt{x}+sqrt{y}}{2}right)^{16}}}=25.$$






                            share|cite|improve this answer









                            $endgroup$
















                              1












                              1








                              1





                              $begingroup$

                              By AM-GM
                              $$left(1+frac{1}{x}right)left(1+frac{1}{y}right)=left(1+frac{4}{4x}right)left(1+frac{4}{4y}right)geq$$
                              $$geqfrac{5}{sqrt[5]{(4x)^4}}cdotfrac{5}{sqrt[5]{(4y)^4}}=frac{25}{sqrt[5]{4^{8}left(sqrt{xy}right)^8}}geqfrac{5}{sqrt[5]{4^8left(frac{sqrt{x}+sqrt{y}}{2}right)^{16}}}=25.$$






                              share|cite|improve this answer









                              $endgroup$



                              By AM-GM
                              $$left(1+frac{1}{x}right)left(1+frac{1}{y}right)=left(1+frac{4}{4x}right)left(1+frac{4}{4y}right)geq$$
                              $$geqfrac{5}{sqrt[5]{(4x)^4}}cdotfrac{5}{sqrt[5]{(4y)^4}}=frac{25}{sqrt[5]{4^{8}left(sqrt{xy}right)^8}}geqfrac{5}{sqrt[5]{4^8left(frac{sqrt{x}+sqrt{y}}{2}right)^{16}}}=25.$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 31 '18 at 2:24









                              Michael RozenbergMichael Rozenberg

                              105k1893198




                              105k1893198























                                  1












                                  $begingroup$

                                  The function
                                  $$ymapsto logleft(1+tfrac{1}{y^2}right)$$
                                  is convex on $(0,infty)$, so Jensen's inequality
                                  $$mathrm{E}left[,logleft(1+tfrac{1}{Y^2}right)right]geq logleft(1+tfrac{1}{mathrm{E}[Y]^2}right)$$
                                  holds for any positive random variable $Y$. Letting $Y=sqrt{X}$, in particular we have
                                  $$mathrm{E}left[,logleft(1+tfrac{1}{X}right)right]geq logleft(1+tfrac{1}{mathrm{E}[sqrt{X}]^2}right)$$
                                  for any positive random variable $X$.



                                  Now, let $X$ be a categorical variable taking on the $N$ positive values $x_0,x_1,ldots,x_{N-1}$ with equal probability $tfrac{1}{N}$, and suppose that
                                  $$mathrm{E}[sqrt{X}]=frac{1}{N}sum_{i=0}^{N-1}sqrt{x_i}=frac{1}{N}text{.}$$
                                  Then the inequality above is



                                  $$frac{1}{N}sum_{i=0}^{N-1}logleft(1+tfrac{1}{x_i}right)geq log(1+N^2)text{;}$$
                                  taking exponentials, we have shown that
                                  $$boxed{sum_{i=0}^{N-1}sqrt{x_i}=1Rightarrowprod_{i=0}^{N-1}left(1+tfrac{1}{x_i}right)geq (1+N^2)^N }text{.}$$
                                  OP's inequality is the case $N=2$.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    1












                                    $begingroup$

                                    The function
                                    $$ymapsto logleft(1+tfrac{1}{y^2}right)$$
                                    is convex on $(0,infty)$, so Jensen's inequality
                                    $$mathrm{E}left[,logleft(1+tfrac{1}{Y^2}right)right]geq logleft(1+tfrac{1}{mathrm{E}[Y]^2}right)$$
                                    holds for any positive random variable $Y$. Letting $Y=sqrt{X}$, in particular we have
                                    $$mathrm{E}left[,logleft(1+tfrac{1}{X}right)right]geq logleft(1+tfrac{1}{mathrm{E}[sqrt{X}]^2}right)$$
                                    for any positive random variable $X$.



                                    Now, let $X$ be a categorical variable taking on the $N$ positive values $x_0,x_1,ldots,x_{N-1}$ with equal probability $tfrac{1}{N}$, and suppose that
                                    $$mathrm{E}[sqrt{X}]=frac{1}{N}sum_{i=0}^{N-1}sqrt{x_i}=frac{1}{N}text{.}$$
                                    Then the inequality above is



                                    $$frac{1}{N}sum_{i=0}^{N-1}logleft(1+tfrac{1}{x_i}right)geq log(1+N^2)text{;}$$
                                    taking exponentials, we have shown that
                                    $$boxed{sum_{i=0}^{N-1}sqrt{x_i}=1Rightarrowprod_{i=0}^{N-1}left(1+tfrac{1}{x_i}right)geq (1+N^2)^N }text{.}$$
                                    OP's inequality is the case $N=2$.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      The function
                                      $$ymapsto logleft(1+tfrac{1}{y^2}right)$$
                                      is convex on $(0,infty)$, so Jensen's inequality
                                      $$mathrm{E}left[,logleft(1+tfrac{1}{Y^2}right)right]geq logleft(1+tfrac{1}{mathrm{E}[Y]^2}right)$$
                                      holds for any positive random variable $Y$. Letting $Y=sqrt{X}$, in particular we have
                                      $$mathrm{E}left[,logleft(1+tfrac{1}{X}right)right]geq logleft(1+tfrac{1}{mathrm{E}[sqrt{X}]^2}right)$$
                                      for any positive random variable $X$.



                                      Now, let $X$ be a categorical variable taking on the $N$ positive values $x_0,x_1,ldots,x_{N-1}$ with equal probability $tfrac{1}{N}$, and suppose that
                                      $$mathrm{E}[sqrt{X}]=frac{1}{N}sum_{i=0}^{N-1}sqrt{x_i}=frac{1}{N}text{.}$$
                                      Then the inequality above is



                                      $$frac{1}{N}sum_{i=0}^{N-1}logleft(1+tfrac{1}{x_i}right)geq log(1+N^2)text{;}$$
                                      taking exponentials, we have shown that
                                      $$boxed{sum_{i=0}^{N-1}sqrt{x_i}=1Rightarrowprod_{i=0}^{N-1}left(1+tfrac{1}{x_i}right)geq (1+N^2)^N }text{.}$$
                                      OP's inequality is the case $N=2$.






                                      share|cite|improve this answer









                                      $endgroup$



                                      The function
                                      $$ymapsto logleft(1+tfrac{1}{y^2}right)$$
                                      is convex on $(0,infty)$, so Jensen's inequality
                                      $$mathrm{E}left[,logleft(1+tfrac{1}{Y^2}right)right]geq logleft(1+tfrac{1}{mathrm{E}[Y]^2}right)$$
                                      holds for any positive random variable $Y$. Letting $Y=sqrt{X}$, in particular we have
                                      $$mathrm{E}left[,logleft(1+tfrac{1}{X}right)right]geq logleft(1+tfrac{1}{mathrm{E}[sqrt{X}]^2}right)$$
                                      for any positive random variable $X$.



                                      Now, let $X$ be a categorical variable taking on the $N$ positive values $x_0,x_1,ldots,x_{N-1}$ with equal probability $tfrac{1}{N}$, and suppose that
                                      $$mathrm{E}[sqrt{X}]=frac{1}{N}sum_{i=0}^{N-1}sqrt{x_i}=frac{1}{N}text{.}$$
                                      Then the inequality above is



                                      $$frac{1}{N}sum_{i=0}^{N-1}logleft(1+tfrac{1}{x_i}right)geq log(1+N^2)text{;}$$
                                      taking exponentials, we have shown that
                                      $$boxed{sum_{i=0}^{N-1}sqrt{x_i}=1Rightarrowprod_{i=0}^{N-1}left(1+tfrac{1}{x_i}right)geq (1+N^2)^N }text{.}$$
                                      OP's inequality is the case $N=2$.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 31 '18 at 5:33









                                      K B DaveK B Dave

                                      3,462317




                                      3,462317






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057254%2fif-x-y-sqrtx-sqrty-with-x-neq-y-then-1-frac1x1-frac1y%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Bressuire

                                          Cabo Verde

                                          Gyllenstierna