Let $a;b;c>0$. Prove : $frac{a^{2}}{b+c}+frac{b^{2}}{c+a}+frac{c^{2}}{a+b}geq...
$begingroup$
Let $a;b;c>0$. Prove :
$frac{a^{2}}{b+c}+frac{b^{2}}{c+a}+frac{c^{2}}{a+b}geq frac{b^{2}}{b+c}+frac{c^{2}}{c+a}+frac{a^{2}}{a+b}$
P/s : Only use AM-GM and Cauchy-Schwarz
In the cases only use AM-GM and Cauchy-Schwarz; i don't have any thoughts about this problem !!
inequality
$endgroup$
add a comment |
$begingroup$
Let $a;b;c>0$. Prove :
$frac{a^{2}}{b+c}+frac{b^{2}}{c+a}+frac{c^{2}}{a+b}geq frac{b^{2}}{b+c}+frac{c^{2}}{c+a}+frac{a^{2}}{a+b}$
P/s : Only use AM-GM and Cauchy-Schwarz
In the cases only use AM-GM and Cauchy-Schwarz; i don't have any thoughts about this problem !!
inequality
$endgroup$
1
$begingroup$
What are you summing over?
$endgroup$
– David H
Dec 2 '13 at 15:03
add a comment |
$begingroup$
Let $a;b;c>0$. Prove :
$frac{a^{2}}{b+c}+frac{b^{2}}{c+a}+frac{c^{2}}{a+b}geq frac{b^{2}}{b+c}+frac{c^{2}}{c+a}+frac{a^{2}}{a+b}$
P/s : Only use AM-GM and Cauchy-Schwarz
In the cases only use AM-GM and Cauchy-Schwarz; i don't have any thoughts about this problem !!
inequality
$endgroup$
Let $a;b;c>0$. Prove :
$frac{a^{2}}{b+c}+frac{b^{2}}{c+a}+frac{c^{2}}{a+b}geq frac{b^{2}}{b+c}+frac{c^{2}}{c+a}+frac{a^{2}}{a+b}$
P/s : Only use AM-GM and Cauchy-Schwarz
In the cases only use AM-GM and Cauchy-Schwarz; i don't have any thoughts about this problem !!
inequality
inequality
edited Dec 2 '13 at 15:08
Michael Joyce
12.4k21939
12.4k21939
asked Dec 2 '13 at 15:01
Lê Tấn KhangLê Tấn Khang
608310
608310
1
$begingroup$
What are you summing over?
$endgroup$
– David H
Dec 2 '13 at 15:03
add a comment |
1
$begingroup$
What are you summing over?
$endgroup$
– David H
Dec 2 '13 at 15:03
1
1
$begingroup$
What are you summing over?
$endgroup$
– David H
Dec 2 '13 at 15:03
$begingroup$
What are you summing over?
$endgroup$
– David H
Dec 2 '13 at 15:03
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
I don't see how to do it with AM/GM and CS, but here's an alternative method: by homogeneity, we may assume wlog that $a+b+c=1$, so we are to prove that
$$ frac{a^2}{1-a} + frac{b^2}{1-b} + frac{c^2}{1-c}
ge frac{b^2}{1-a} + frac{c^2}{1-b} + frac{a^2}{1-c} $$
Since $xmapsto x^2$ and $xmapstofrac1{1-x}$ are increasing functions for $xin(0,1)$, the tuples $(a^2,b^2,c^2)$ and $(frac1{1-a},frac1{1-b},frac1{1-c})$ are in the same order (e.g., if $age bge c$ then $a^2ge b^2ge c^2$ and $frac1{1-a}gefrac1{1-b}gefrac1{1-c}$), so the desired inequality follows from the rearrangement inequality.
$endgroup$
add a comment |
$begingroup$
We need to prove that $$sumlimits_{cyc}frac{a^2-b^2}{b+c}geq0$$ or $$sumlimits_{cyc}(a^2-b^2)(a+b)(a+c)geq0$$ or
$$sumlimits_{cyc}(a^2-b^2)(a^2+ab+ac+bc)geq0$$ or
$$sumlimits_{cyc}(a^2-b^2)a^2geq0$$ or
$$sumlimits_{cyc}left(frac{a^4+b^4}{2}-a^2b^2right)geq0,$$
which is true by AM-GM.
$endgroup$
add a comment |
$begingroup$
You can just do it in one step (without any computation) if you use the rearrangement inequality.
Notice that for any positive reals a, b and c,
$(a^2,b^2,c^2)$ and $(1/b+c,1/c+a,1/a+c)$ are similarly sorted. So,
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f589678%2flet-abc0-prove-fraca2bc-fracb2ca-fracc2ab-ge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I don't see how to do it with AM/GM and CS, but here's an alternative method: by homogeneity, we may assume wlog that $a+b+c=1$, so we are to prove that
$$ frac{a^2}{1-a} + frac{b^2}{1-b} + frac{c^2}{1-c}
ge frac{b^2}{1-a} + frac{c^2}{1-b} + frac{a^2}{1-c} $$
Since $xmapsto x^2$ and $xmapstofrac1{1-x}$ are increasing functions for $xin(0,1)$, the tuples $(a^2,b^2,c^2)$ and $(frac1{1-a},frac1{1-b},frac1{1-c})$ are in the same order (e.g., if $age bge c$ then $a^2ge b^2ge c^2$ and $frac1{1-a}gefrac1{1-b}gefrac1{1-c}$), so the desired inequality follows from the rearrangement inequality.
$endgroup$
add a comment |
$begingroup$
I don't see how to do it with AM/GM and CS, but here's an alternative method: by homogeneity, we may assume wlog that $a+b+c=1$, so we are to prove that
$$ frac{a^2}{1-a} + frac{b^2}{1-b} + frac{c^2}{1-c}
ge frac{b^2}{1-a} + frac{c^2}{1-b} + frac{a^2}{1-c} $$
Since $xmapsto x^2$ and $xmapstofrac1{1-x}$ are increasing functions for $xin(0,1)$, the tuples $(a^2,b^2,c^2)$ and $(frac1{1-a},frac1{1-b},frac1{1-c})$ are in the same order (e.g., if $age bge c$ then $a^2ge b^2ge c^2$ and $frac1{1-a}gefrac1{1-b}gefrac1{1-c}$), so the desired inequality follows from the rearrangement inequality.
$endgroup$
add a comment |
$begingroup$
I don't see how to do it with AM/GM and CS, but here's an alternative method: by homogeneity, we may assume wlog that $a+b+c=1$, so we are to prove that
$$ frac{a^2}{1-a} + frac{b^2}{1-b} + frac{c^2}{1-c}
ge frac{b^2}{1-a} + frac{c^2}{1-b} + frac{a^2}{1-c} $$
Since $xmapsto x^2$ and $xmapstofrac1{1-x}$ are increasing functions for $xin(0,1)$, the tuples $(a^2,b^2,c^2)$ and $(frac1{1-a},frac1{1-b},frac1{1-c})$ are in the same order (e.g., if $age bge c$ then $a^2ge b^2ge c^2$ and $frac1{1-a}gefrac1{1-b}gefrac1{1-c}$), so the desired inequality follows from the rearrangement inequality.
$endgroup$
I don't see how to do it with AM/GM and CS, but here's an alternative method: by homogeneity, we may assume wlog that $a+b+c=1$, so we are to prove that
$$ frac{a^2}{1-a} + frac{b^2}{1-b} + frac{c^2}{1-c}
ge frac{b^2}{1-a} + frac{c^2}{1-b} + frac{a^2}{1-c} $$
Since $xmapsto x^2$ and $xmapstofrac1{1-x}$ are increasing functions for $xin(0,1)$, the tuples $(a^2,b^2,c^2)$ and $(frac1{1-a},frac1{1-b},frac1{1-c})$ are in the same order (e.g., if $age bge c$ then $a^2ge b^2ge c^2$ and $frac1{1-a}gefrac1{1-b}gefrac1{1-c}$), so the desired inequality follows from the rearrangement inequality.
answered Dec 17 '13 at 23:32
user21467
add a comment |
add a comment |
$begingroup$
We need to prove that $$sumlimits_{cyc}frac{a^2-b^2}{b+c}geq0$$ or $$sumlimits_{cyc}(a^2-b^2)(a+b)(a+c)geq0$$ or
$$sumlimits_{cyc}(a^2-b^2)(a^2+ab+ac+bc)geq0$$ or
$$sumlimits_{cyc}(a^2-b^2)a^2geq0$$ or
$$sumlimits_{cyc}left(frac{a^4+b^4}{2}-a^2b^2right)geq0,$$
which is true by AM-GM.
$endgroup$
add a comment |
$begingroup$
We need to prove that $$sumlimits_{cyc}frac{a^2-b^2}{b+c}geq0$$ or $$sumlimits_{cyc}(a^2-b^2)(a+b)(a+c)geq0$$ or
$$sumlimits_{cyc}(a^2-b^2)(a^2+ab+ac+bc)geq0$$ or
$$sumlimits_{cyc}(a^2-b^2)a^2geq0$$ or
$$sumlimits_{cyc}left(frac{a^4+b^4}{2}-a^2b^2right)geq0,$$
which is true by AM-GM.
$endgroup$
add a comment |
$begingroup$
We need to prove that $$sumlimits_{cyc}frac{a^2-b^2}{b+c}geq0$$ or $$sumlimits_{cyc}(a^2-b^2)(a+b)(a+c)geq0$$ or
$$sumlimits_{cyc}(a^2-b^2)(a^2+ab+ac+bc)geq0$$ or
$$sumlimits_{cyc}(a^2-b^2)a^2geq0$$ or
$$sumlimits_{cyc}left(frac{a^4+b^4}{2}-a^2b^2right)geq0,$$
which is true by AM-GM.
$endgroup$
We need to prove that $$sumlimits_{cyc}frac{a^2-b^2}{b+c}geq0$$ or $$sumlimits_{cyc}(a^2-b^2)(a+b)(a+c)geq0$$ or
$$sumlimits_{cyc}(a^2-b^2)(a^2+ab+ac+bc)geq0$$ or
$$sumlimits_{cyc}(a^2-b^2)a^2geq0$$ or
$$sumlimits_{cyc}left(frac{a^4+b^4}{2}-a^2b^2right)geq0,$$
which is true by AM-GM.
answered Dec 13 '16 at 15:04
Michael RozenbergMichael Rozenberg
105k1892198
105k1892198
add a comment |
add a comment |
$begingroup$
You can just do it in one step (without any computation) if you use the rearrangement inequality.
Notice that for any positive reals a, b and c,
$(a^2,b^2,c^2)$ and $(1/b+c,1/c+a,1/a+c)$ are similarly sorted. So,
$endgroup$
add a comment |
$begingroup$
You can just do it in one step (without any computation) if you use the rearrangement inequality.
Notice that for any positive reals a, b and c,
$(a^2,b^2,c^2)$ and $(1/b+c,1/c+a,1/a+c)$ are similarly sorted. So,
$endgroup$
add a comment |
$begingroup$
You can just do it in one step (without any computation) if you use the rearrangement inequality.
Notice that for any positive reals a, b and c,
$(a^2,b^2,c^2)$ and $(1/b+c,1/c+a,1/a+c)$ are similarly sorted. So,
$endgroup$
You can just do it in one step (without any computation) if you use the rearrangement inequality.
Notice that for any positive reals a, b and c,
$(a^2,b^2,c^2)$ and $(1/b+c,1/c+a,1/a+c)$ are similarly sorted. So,
answered Dec 30 '18 at 18:00
Shashwat1337Shashwat1337
789
789
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f589678%2flet-abc0-prove-fraca2bc-fracb2ca-fracc2ab-ge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What are you summing over?
$endgroup$
– David H
Dec 2 '13 at 15:03