Solve for the coefficient of an even generating function
$begingroup$
Using a generating function, find the number of ways to select 10 candies from a huge pile of red, blue, and green lollipops if the selection has an even number of blue lollipops.
I started, but I don't understand how to continue
$(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$
$=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$
$=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot ???$
How do you find coefficient to $x^{10}$?
Also, our textbook tells us $(1 + x^2 + x^4 + x^6 ...)$ = $frac{1}{1-x^2}$ how?
combinatorics generating-functions
$endgroup$
add a comment |
$begingroup$
Using a generating function, find the number of ways to select 10 candies from a huge pile of red, blue, and green lollipops if the selection has an even number of blue lollipops.
I started, but I don't understand how to continue
$(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$
$=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$
$=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot ???$
How do you find coefficient to $x^{10}$?
Also, our textbook tells us $(1 + x^2 + x^4 + x^6 ...)$ = $frac{1}{1-x^2}$ how?
combinatorics generating-functions
$endgroup$
add a comment |
$begingroup$
Using a generating function, find the number of ways to select 10 candies from a huge pile of red, blue, and green lollipops if the selection has an even number of blue lollipops.
I started, but I don't understand how to continue
$(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$
$=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$
$=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot ???$
How do you find coefficient to $x^{10}$?
Also, our textbook tells us $(1 + x^2 + x^4 + x^6 ...)$ = $frac{1}{1-x^2}$ how?
combinatorics generating-functions
$endgroup$
Using a generating function, find the number of ways to select 10 candies from a huge pile of red, blue, and green lollipops if the selection has an even number of blue lollipops.
I started, but I don't understand how to continue
$(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$
$=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$
$=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot ???$
How do you find coefficient to $x^{10}$?
Also, our textbook tells us $(1 + x^2 + x^4 + x^6 ...)$ = $frac{1}{1-x^2}$ how?
combinatorics generating-functions
combinatorics generating-functions
edited Dec 27 '18 at 0:06
Math Newbie
asked Oct 31 '18 at 23:29
Math NewbieMath Newbie
428
428
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Notice that $left(frac{1}{1-x}right)^2=frac{d}{dx}left(frac{1}{1-x}right)$, and hence $left(frac{1}{1-x}right)^2=1+2x+3x^2+dots$ You can then find the $x^{10}$ coefficient just by multiplying out.
The equality stated in the textbooks holds for the same reason that $1+x+x^2+dots=frac{1}{1-x}$.
$endgroup$
add a comment |
$begingroup$
The original problem is $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$
$frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$
Which can be shown by,
$1 = (1 + x + x^2 + x^3 ...)(1-x)$
$1 = (1 + x + x^2 + x^3 ...) - x cdot (1 + x + x^2 + x^3 ...)$
$1 =1$
To show, $frac{1}{1-x^2} = (1 + x^2 + x^4 + x^6 ...)$
we substitute $y = x^2$
$frac{1}{1-y} = (1 + y + y^2 + y^3 ...)$ which is equivalent due to $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$ shown above.
To solve the equation,
$=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$
$=frac{1}{(1-x)^2} cdot frac{1}{1-x^2}$
$=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot (1 + x^2 + x^4 + x^6 ...)$
Thus the coefficient of $x^{10}$ is the coefficient of
$=1 cdot x^{10} + binom{3}{1}x^2 cdot x^{8} + binom{5}{1}x^4 cdot x^{6} + binom{7}{1}x^6 cdot x^{4} + binom{9}{1}x^8 cdot x^{2} + binom{11}{1}x^{10} cdot 1$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2979775%2fsolve-for-the-coefficient-of-an-even-generating-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Notice that $left(frac{1}{1-x}right)^2=frac{d}{dx}left(frac{1}{1-x}right)$, and hence $left(frac{1}{1-x}right)^2=1+2x+3x^2+dots$ You can then find the $x^{10}$ coefficient just by multiplying out.
The equality stated in the textbooks holds for the same reason that $1+x+x^2+dots=frac{1}{1-x}$.
$endgroup$
add a comment |
$begingroup$
Notice that $left(frac{1}{1-x}right)^2=frac{d}{dx}left(frac{1}{1-x}right)$, and hence $left(frac{1}{1-x}right)^2=1+2x+3x^2+dots$ You can then find the $x^{10}$ coefficient just by multiplying out.
The equality stated in the textbooks holds for the same reason that $1+x+x^2+dots=frac{1}{1-x}$.
$endgroup$
add a comment |
$begingroup$
Notice that $left(frac{1}{1-x}right)^2=frac{d}{dx}left(frac{1}{1-x}right)$, and hence $left(frac{1}{1-x}right)^2=1+2x+3x^2+dots$ You can then find the $x^{10}$ coefficient just by multiplying out.
The equality stated in the textbooks holds for the same reason that $1+x+x^2+dots=frac{1}{1-x}$.
$endgroup$
Notice that $left(frac{1}{1-x}right)^2=frac{d}{dx}left(frac{1}{1-x}right)$, and hence $left(frac{1}{1-x}right)^2=1+2x+3x^2+dots$ You can then find the $x^{10}$ coefficient just by multiplying out.
The equality stated in the textbooks holds for the same reason that $1+x+x^2+dots=frac{1}{1-x}$.
answered Nov 1 '18 at 1:03
Harry PetytHarry Petyt
1435
1435
add a comment |
add a comment |
$begingroup$
The original problem is $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$
$frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$
Which can be shown by,
$1 = (1 + x + x^2 + x^3 ...)(1-x)$
$1 = (1 + x + x^2 + x^3 ...) - x cdot (1 + x + x^2 + x^3 ...)$
$1 =1$
To show, $frac{1}{1-x^2} = (1 + x^2 + x^4 + x^6 ...)$
we substitute $y = x^2$
$frac{1}{1-y} = (1 + y + y^2 + y^3 ...)$ which is equivalent due to $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$ shown above.
To solve the equation,
$=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$
$=frac{1}{(1-x)^2} cdot frac{1}{1-x^2}$
$=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot (1 + x^2 + x^4 + x^6 ...)$
Thus the coefficient of $x^{10}$ is the coefficient of
$=1 cdot x^{10} + binom{3}{1}x^2 cdot x^{8} + binom{5}{1}x^4 cdot x^{6} + binom{7}{1}x^6 cdot x^{4} + binom{9}{1}x^8 cdot x^{2} + binom{11}{1}x^{10} cdot 1$
$endgroup$
add a comment |
$begingroup$
The original problem is $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$
$frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$
Which can be shown by,
$1 = (1 + x + x^2 + x^3 ...)(1-x)$
$1 = (1 + x + x^2 + x^3 ...) - x cdot (1 + x + x^2 + x^3 ...)$
$1 =1$
To show, $frac{1}{1-x^2} = (1 + x^2 + x^4 + x^6 ...)$
we substitute $y = x^2$
$frac{1}{1-y} = (1 + y + y^2 + y^3 ...)$ which is equivalent due to $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$ shown above.
To solve the equation,
$=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$
$=frac{1}{(1-x)^2} cdot frac{1}{1-x^2}$
$=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot (1 + x^2 + x^4 + x^6 ...)$
Thus the coefficient of $x^{10}$ is the coefficient of
$=1 cdot x^{10} + binom{3}{1}x^2 cdot x^{8} + binom{5}{1}x^4 cdot x^{6} + binom{7}{1}x^6 cdot x^{4} + binom{9}{1}x^8 cdot x^{2} + binom{11}{1}x^{10} cdot 1$
$endgroup$
add a comment |
$begingroup$
The original problem is $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$
$frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$
Which can be shown by,
$1 = (1 + x + x^2 + x^3 ...)(1-x)$
$1 = (1 + x + x^2 + x^3 ...) - x cdot (1 + x + x^2 + x^3 ...)$
$1 =1$
To show, $frac{1}{1-x^2} = (1 + x^2 + x^4 + x^6 ...)$
we substitute $y = x^2$
$frac{1}{1-y} = (1 + y + y^2 + y^3 ...)$ which is equivalent due to $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$ shown above.
To solve the equation,
$=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$
$=frac{1}{(1-x)^2} cdot frac{1}{1-x^2}$
$=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot (1 + x^2 + x^4 + x^6 ...)$
Thus the coefficient of $x^{10}$ is the coefficient of
$=1 cdot x^{10} + binom{3}{1}x^2 cdot x^{8} + binom{5}{1}x^4 cdot x^{6} + binom{7}{1}x^6 cdot x^{4} + binom{9}{1}x^8 cdot x^{2} + binom{11}{1}x^{10} cdot 1$
$endgroup$
The original problem is $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$
$frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$
Which can be shown by,
$1 = (1 + x + x^2 + x^3 ...)(1-x)$
$1 = (1 + x + x^2 + x^3 ...) - x cdot (1 + x + x^2 + x^3 ...)$
$1 =1$
To show, $frac{1}{1-x^2} = (1 + x^2 + x^4 + x^6 ...)$
we substitute $y = x^2$
$frac{1}{1-y} = (1 + y + y^2 + y^3 ...)$ which is equivalent due to $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$ shown above.
To solve the equation,
$=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$
$=frac{1}{(1-x)^2} cdot frac{1}{1-x^2}$
$=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot (1 + x^2 + x^4 + x^6 ...)$
Thus the coefficient of $x^{10}$ is the coefficient of
$=1 cdot x^{10} + binom{3}{1}x^2 cdot x^{8} + binom{5}{1}x^4 cdot x^{6} + binom{7}{1}x^6 cdot x^{4} + binom{9}{1}x^8 cdot x^{2} + binom{11}{1}x^{10} cdot 1$
answered Dec 27 '18 at 0:22
Math NewbieMath Newbie
428
428
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2979775%2fsolve-for-the-coefficient-of-an-even-generating-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown