Solve for the coefficient of an even generating function












1












$begingroup$


Using a generating function, find the number of ways to select 10 candies from a huge pile of red, blue, and green lollipops if the selection has an even number of blue lollipops.



I started, but I don't understand how to continue



$(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$



$=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$



$=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot ???$



How do you find coefficient to $x^{10}$?



Also, our textbook tells us $(1 + x^2 + x^4 + x^6 ...)$ = $frac{1}{1-x^2}$ how?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Using a generating function, find the number of ways to select 10 candies from a huge pile of red, blue, and green lollipops if the selection has an even number of blue lollipops.



    I started, but I don't understand how to continue



    $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$



    $=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$



    $=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot ???$



    How do you find coefficient to $x^{10}$?



    Also, our textbook tells us $(1 + x^2 + x^4 + x^6 ...)$ = $frac{1}{1-x^2}$ how?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Using a generating function, find the number of ways to select 10 candies from a huge pile of red, blue, and green lollipops if the selection has an even number of blue lollipops.



      I started, but I don't understand how to continue



      $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$



      $=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$



      $=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot ???$



      How do you find coefficient to $x^{10}$?



      Also, our textbook tells us $(1 + x^2 + x^4 + x^6 ...)$ = $frac{1}{1-x^2}$ how?










      share|cite|improve this question











      $endgroup$




      Using a generating function, find the number of ways to select 10 candies from a huge pile of red, blue, and green lollipops if the selection has an even number of blue lollipops.



      I started, but I don't understand how to continue



      $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$



      $=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$



      $=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot ???$



      How do you find coefficient to $x^{10}$?



      Also, our textbook tells us $(1 + x^2 + x^4 + x^6 ...)$ = $frac{1}{1-x^2}$ how?







      combinatorics generating-functions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 27 '18 at 0:06







      Math Newbie

















      asked Oct 31 '18 at 23:29









      Math NewbieMath Newbie

      428




      428






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Notice that $left(frac{1}{1-x}right)^2=frac{d}{dx}left(frac{1}{1-x}right)$, and hence $left(frac{1}{1-x}right)^2=1+2x+3x^2+dots$ You can then find the $x^{10}$ coefficient just by multiplying out.



          The equality stated in the textbooks holds for the same reason that $1+x+x^2+dots=frac{1}{1-x}$.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            The original problem is $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$



            $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$



            Which can be shown by,



            $1 = (1 + x + x^2 + x^3 ...)(1-x)$



            $1 = (1 + x + x^2 + x^3 ...) - x cdot (1 + x + x^2 + x^3 ...)$



            $1 =1$



            To show, $frac{1}{1-x^2} = (1 + x^2 + x^4 + x^6 ...)$



            we substitute $y = x^2$



            $frac{1}{1-y} = (1 + y + y^2 + y^3 ...)$ which is equivalent due to $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$ shown above.



            To solve the equation,



            $=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$



            $=frac{1}{(1-x)^2} cdot frac{1}{1-x^2}$



            $=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot (1 + x^2 + x^4 + x^6 ...)$



            Thus the coefficient of $x^{10}$ is the coefficient of



            $=1 cdot x^{10} + binom{3}{1}x^2 cdot x^{8} + binom{5}{1}x^4 cdot x^{6} + binom{7}{1}x^6 cdot x^{4} + binom{9}{1}x^8 cdot x^{2} + binom{11}{1}x^{10} cdot 1$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2979775%2fsolve-for-the-coefficient-of-an-even-generating-function%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Notice that $left(frac{1}{1-x}right)^2=frac{d}{dx}left(frac{1}{1-x}right)$, and hence $left(frac{1}{1-x}right)^2=1+2x+3x^2+dots$ You can then find the $x^{10}$ coefficient just by multiplying out.



              The equality stated in the textbooks holds for the same reason that $1+x+x^2+dots=frac{1}{1-x}$.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Notice that $left(frac{1}{1-x}right)^2=frac{d}{dx}left(frac{1}{1-x}right)$, and hence $left(frac{1}{1-x}right)^2=1+2x+3x^2+dots$ You can then find the $x^{10}$ coefficient just by multiplying out.



                The equality stated in the textbooks holds for the same reason that $1+x+x^2+dots=frac{1}{1-x}$.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Notice that $left(frac{1}{1-x}right)^2=frac{d}{dx}left(frac{1}{1-x}right)$, and hence $left(frac{1}{1-x}right)^2=1+2x+3x^2+dots$ You can then find the $x^{10}$ coefficient just by multiplying out.



                  The equality stated in the textbooks holds for the same reason that $1+x+x^2+dots=frac{1}{1-x}$.






                  share|cite|improve this answer









                  $endgroup$



                  Notice that $left(frac{1}{1-x}right)^2=frac{d}{dx}left(frac{1}{1-x}right)$, and hence $left(frac{1}{1-x}right)^2=1+2x+3x^2+dots$ You can then find the $x^{10}$ coefficient just by multiplying out.



                  The equality stated in the textbooks holds for the same reason that $1+x+x^2+dots=frac{1}{1-x}$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 1 '18 at 1:03









                  Harry PetytHarry Petyt

                  1435




                  1435























                      1












                      $begingroup$

                      The original problem is $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$



                      $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$



                      Which can be shown by,



                      $1 = (1 + x + x^2 + x^3 ...)(1-x)$



                      $1 = (1 + x + x^2 + x^3 ...) - x cdot (1 + x + x^2 + x^3 ...)$



                      $1 =1$



                      To show, $frac{1}{1-x^2} = (1 + x^2 + x^4 + x^6 ...)$



                      we substitute $y = x^2$



                      $frac{1}{1-y} = (1 + y + y^2 + y^3 ...)$ which is equivalent due to $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$ shown above.



                      To solve the equation,



                      $=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$



                      $=frac{1}{(1-x)^2} cdot frac{1}{1-x^2}$



                      $=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot (1 + x^2 + x^4 + x^6 ...)$



                      Thus the coefficient of $x^{10}$ is the coefficient of



                      $=1 cdot x^{10} + binom{3}{1}x^2 cdot x^{8} + binom{5}{1}x^4 cdot x^{6} + binom{7}{1}x^6 cdot x^{4} + binom{9}{1}x^8 cdot x^{2} + binom{11}{1}x^{10} cdot 1$






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        The original problem is $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$



                        $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$



                        Which can be shown by,



                        $1 = (1 + x + x^2 + x^3 ...)(1-x)$



                        $1 = (1 + x + x^2 + x^3 ...) - x cdot (1 + x + x^2 + x^3 ...)$



                        $1 =1$



                        To show, $frac{1}{1-x^2} = (1 + x^2 + x^4 + x^6 ...)$



                        we substitute $y = x^2$



                        $frac{1}{1-y} = (1 + y + y^2 + y^3 ...)$ which is equivalent due to $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$ shown above.



                        To solve the equation,



                        $=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$



                        $=frac{1}{(1-x)^2} cdot frac{1}{1-x^2}$



                        $=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot (1 + x^2 + x^4 + x^6 ...)$



                        Thus the coefficient of $x^{10}$ is the coefficient of



                        $=1 cdot x^{10} + binom{3}{1}x^2 cdot x^{8} + binom{5}{1}x^4 cdot x^{6} + binom{7}{1}x^6 cdot x^{4} + binom{9}{1}x^8 cdot x^{2} + binom{11}{1}x^{10} cdot 1$






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          The original problem is $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$



                          $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$



                          Which can be shown by,



                          $1 = (1 + x + x^2 + x^3 ...)(1-x)$



                          $1 = (1 + x + x^2 + x^3 ...) - x cdot (1 + x + x^2 + x^3 ...)$



                          $1 =1$



                          To show, $frac{1}{1-x^2} = (1 + x^2 + x^4 + x^6 ...)$



                          we substitute $y = x^2$



                          $frac{1}{1-y} = (1 + y + y^2 + y^3 ...)$ which is equivalent due to $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$ shown above.



                          To solve the equation,



                          $=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$



                          $=frac{1}{(1-x)^2} cdot frac{1}{1-x^2}$



                          $=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot (1 + x^2 + x^4 + x^6 ...)$



                          Thus the coefficient of $x^{10}$ is the coefficient of



                          $=1 cdot x^{10} + binom{3}{1}x^2 cdot x^{8} + binom{5}{1}x^4 cdot x^{6} + binom{7}{1}x^6 cdot x^{4} + binom{9}{1}x^8 cdot x^{2} + binom{11}{1}x^{10} cdot 1$






                          share|cite|improve this answer









                          $endgroup$



                          The original problem is $(1 + x + x^2 + x^3 ...)^2 cdot (1 + x^2 + x^4 + x^6 ...)$



                          $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$



                          Which can be shown by,



                          $1 = (1 + x + x^2 + x^3 ...)(1-x)$



                          $1 = (1 + x + x^2 + x^3 ...) - x cdot (1 + x + x^2 + x^3 ...)$



                          $1 =1$



                          To show, $frac{1}{1-x^2} = (1 + x^2 + x^4 + x^6 ...)$



                          we substitute $y = x^2$



                          $frac{1}{1-y} = (1 + y + y^2 + y^3 ...)$ which is equivalent due to $frac{1}{1-x} = (1 + x + x^2 + x^3 ...)$ shown above.



                          To solve the equation,



                          $=(frac{1}{1-x})^2 cdot frac{1}{1-x^2}$



                          $=frac{1}{(1-x)^2} cdot frac{1}{1-x^2}$



                          $=big(1 + binom{1 + 2 - 1}{1}x + binom{2 + 2 - 1}{2}x^2 ...big) cdot (1 + x^2 + x^4 + x^6 ...)$



                          Thus the coefficient of $x^{10}$ is the coefficient of



                          $=1 cdot x^{10} + binom{3}{1}x^2 cdot x^{8} + binom{5}{1}x^4 cdot x^{6} + binom{7}{1}x^6 cdot x^{4} + binom{9}{1}x^8 cdot x^{2} + binom{11}{1}x^{10} cdot 1$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 27 '18 at 0:22









                          Math NewbieMath Newbie

                          428




                          428






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2979775%2fsolve-for-the-coefficient-of-an-even-generating-function%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bressuire

                              Cabo Verde

                              Gyllenstierna