uniform distribution on [0,1] find function
$begingroup$
Consider $X∼unif [0,1]$. Find a function $g: mathbb{R} longrightarrow mathbb{R}$, such that g(X) has pdf $f(t) = begin{cases} {t+1}, & text{$-1 leq tleq 0$} \ {1-t}, &
text{$0<tleq 1$}end{cases}$.
Can you help me, please? I do not know what I have to do.
probability probability-theory random-variables uniform-distribution density-function
$endgroup$
add a comment |
$begingroup$
Consider $X∼unif [0,1]$. Find a function $g: mathbb{R} longrightarrow mathbb{R}$, such that g(X) has pdf $f(t) = begin{cases} {t+1}, & text{$-1 leq tleq 0$} \ {1-t}, &
text{$0<tleq 1$}end{cases}$.
Can you help me, please? I do not know what I have to do.
probability probability-theory random-variables uniform-distribution density-function
$endgroup$
add a comment |
$begingroup$
Consider $X∼unif [0,1]$. Find a function $g: mathbb{R} longrightarrow mathbb{R}$, such that g(X) has pdf $f(t) = begin{cases} {t+1}, & text{$-1 leq tleq 0$} \ {1-t}, &
text{$0<tleq 1$}end{cases}$.
Can you help me, please? I do not know what I have to do.
probability probability-theory random-variables uniform-distribution density-function
$endgroup$
Consider $X∼unif [0,1]$. Find a function $g: mathbb{R} longrightarrow mathbb{R}$, such that g(X) has pdf $f(t) = begin{cases} {t+1}, & text{$-1 leq tleq 0$} \ {1-t}, &
text{$0<tleq 1$}end{cases}$.
Can you help me, please? I do not know what I have to do.
probability probability-theory random-variables uniform-distribution density-function
probability probability-theory random-variables uniform-distribution density-function
asked Jan 3 at 17:16
tommy_mtommy_m
1915
1915
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint/Guide
Compute the cdf $F$ corresponding to $f$ (i.e. $F(x)=int_{-infty}^x f(t), dt)$ and use the fact that $F^{-1}(X)$ has the same distribution as $F$. So we can take $g=F^{-1}$.
$endgroup$
$begingroup$
Thanks for your answer. So I have $ F(x) = begin{cases} 0 & x <-1\ frac12 + x + frac{x^2}{2} & x in[-1,0]\ frac12 + x - frac{x^2}{2} & x in(0,1]\ 0 & x > 1end{cases}$. Is that correct? Now I have to calculate $F^{-1}(x)$ for every case, right?
$endgroup$
– tommy_m
Jan 3 at 18:36
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060790%2funiform-distribution-on-0-1-find-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint/Guide
Compute the cdf $F$ corresponding to $f$ (i.e. $F(x)=int_{-infty}^x f(t), dt)$ and use the fact that $F^{-1}(X)$ has the same distribution as $F$. So we can take $g=F^{-1}$.
$endgroup$
$begingroup$
Thanks for your answer. So I have $ F(x) = begin{cases} 0 & x <-1\ frac12 + x + frac{x^2}{2} & x in[-1,0]\ frac12 + x - frac{x^2}{2} & x in(0,1]\ 0 & x > 1end{cases}$. Is that correct? Now I have to calculate $F^{-1}(x)$ for every case, right?
$endgroup$
– tommy_m
Jan 3 at 18:36
add a comment |
$begingroup$
Hint/Guide
Compute the cdf $F$ corresponding to $f$ (i.e. $F(x)=int_{-infty}^x f(t), dt)$ and use the fact that $F^{-1}(X)$ has the same distribution as $F$. So we can take $g=F^{-1}$.
$endgroup$
$begingroup$
Thanks for your answer. So I have $ F(x) = begin{cases} 0 & x <-1\ frac12 + x + frac{x^2}{2} & x in[-1,0]\ frac12 + x - frac{x^2}{2} & x in(0,1]\ 0 & x > 1end{cases}$. Is that correct? Now I have to calculate $F^{-1}(x)$ for every case, right?
$endgroup$
– tommy_m
Jan 3 at 18:36
add a comment |
$begingroup$
Hint/Guide
Compute the cdf $F$ corresponding to $f$ (i.e. $F(x)=int_{-infty}^x f(t), dt)$ and use the fact that $F^{-1}(X)$ has the same distribution as $F$. So we can take $g=F^{-1}$.
$endgroup$
Hint/Guide
Compute the cdf $F$ corresponding to $f$ (i.e. $F(x)=int_{-infty}^x f(t), dt)$ and use the fact that $F^{-1}(X)$ has the same distribution as $F$. So we can take $g=F^{-1}$.
answered Jan 3 at 17:35
Foobaz JohnFoobaz John
22.6k41452
22.6k41452
$begingroup$
Thanks for your answer. So I have $ F(x) = begin{cases} 0 & x <-1\ frac12 + x + frac{x^2}{2} & x in[-1,0]\ frac12 + x - frac{x^2}{2} & x in(0,1]\ 0 & x > 1end{cases}$. Is that correct? Now I have to calculate $F^{-1}(x)$ for every case, right?
$endgroup$
– tommy_m
Jan 3 at 18:36
add a comment |
$begingroup$
Thanks for your answer. So I have $ F(x) = begin{cases} 0 & x <-1\ frac12 + x + frac{x^2}{2} & x in[-1,0]\ frac12 + x - frac{x^2}{2} & x in(0,1]\ 0 & x > 1end{cases}$. Is that correct? Now I have to calculate $F^{-1}(x)$ for every case, right?
$endgroup$
– tommy_m
Jan 3 at 18:36
$begingroup$
Thanks for your answer. So I have $ F(x) = begin{cases} 0 & x <-1\ frac12 + x + frac{x^2}{2} & x in[-1,0]\ frac12 + x - frac{x^2}{2} & x in(0,1]\ 0 & x > 1end{cases}$. Is that correct? Now I have to calculate $F^{-1}(x)$ for every case, right?
$endgroup$
– tommy_m
Jan 3 at 18:36
$begingroup$
Thanks for your answer. So I have $ F(x) = begin{cases} 0 & x <-1\ frac12 + x + frac{x^2}{2} & x in[-1,0]\ frac12 + x - frac{x^2}{2} & x in(0,1]\ 0 & x > 1end{cases}$. Is that correct? Now I have to calculate $F^{-1}(x)$ for every case, right?
$endgroup$
– tommy_m
Jan 3 at 18:36
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060790%2funiform-distribution-on-0-1-find-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown