Derivation of sum of Normal RVs PDF
$begingroup$
Let X~N(0,1) and Y~N(0,1) and independent. Find PDF $f_{x+y}(w)$ by convolution where w=x+y.
So far, this is what I have...
$int_{-infty}^{infty}f_{x}f_{y}(w-x)dx$
$int_{0}^{w}frac{1}{sqrt{2pi}}Exp[frac{-1}{2}(x^2)] * frac{1}{sqrt{2pi}}Exp[frac{-1}{2}((w-x)^2)] dx$
$int_{0}^{w}frac{1}{sqrt{2pi}}Exp[frac{-1}{2}(x^2)]*frac{1}{sqrt{2pi}}Exp[frac{-1}{2}((w^2-2xw+x^2)] dx$
$frac{1}{sqrt{2pi}}Exp[frac{-1}{2}w^2]*int_{0}^{w}frac{1}{sqrt{2pi}}Exp[frac{-1}{2}(-2xw+x^2)dx$]
Not sure where to go from here...I know ultimately the PDF will follow N(0,2)..Should my limits be from 0 to w, or negative infinity to infinity?
Thank you.
probability-distributions normal-distribution convolution
$endgroup$
add a comment |
$begingroup$
Let X~N(0,1) and Y~N(0,1) and independent. Find PDF $f_{x+y}(w)$ by convolution where w=x+y.
So far, this is what I have...
$int_{-infty}^{infty}f_{x}f_{y}(w-x)dx$
$int_{0}^{w}frac{1}{sqrt{2pi}}Exp[frac{-1}{2}(x^2)] * frac{1}{sqrt{2pi}}Exp[frac{-1}{2}((w-x)^2)] dx$
$int_{0}^{w}frac{1}{sqrt{2pi}}Exp[frac{-1}{2}(x^2)]*frac{1}{sqrt{2pi}}Exp[frac{-1}{2}((w^2-2xw+x^2)] dx$
$frac{1}{sqrt{2pi}}Exp[frac{-1}{2}w^2]*int_{0}^{w}frac{1}{sqrt{2pi}}Exp[frac{-1}{2}(-2xw+x^2)dx$]
Not sure where to go from here...I know ultimately the PDF will follow N(0,2)..Should my limits be from 0 to w, or negative infinity to infinity?
Thank you.
probability-distributions normal-distribution convolution
$endgroup$
add a comment |
$begingroup$
Let X~N(0,1) and Y~N(0,1) and independent. Find PDF $f_{x+y}(w)$ by convolution where w=x+y.
So far, this is what I have...
$int_{-infty}^{infty}f_{x}f_{y}(w-x)dx$
$int_{0}^{w}frac{1}{sqrt{2pi}}Exp[frac{-1}{2}(x^2)] * frac{1}{sqrt{2pi}}Exp[frac{-1}{2}((w-x)^2)] dx$
$int_{0}^{w}frac{1}{sqrt{2pi}}Exp[frac{-1}{2}(x^2)]*frac{1}{sqrt{2pi}}Exp[frac{-1}{2}((w^2-2xw+x^2)] dx$
$frac{1}{sqrt{2pi}}Exp[frac{-1}{2}w^2]*int_{0}^{w}frac{1}{sqrt{2pi}}Exp[frac{-1}{2}(-2xw+x^2)dx$]
Not sure where to go from here...I know ultimately the PDF will follow N(0,2)..Should my limits be from 0 to w, or negative infinity to infinity?
Thank you.
probability-distributions normal-distribution convolution
$endgroup$
Let X~N(0,1) and Y~N(0,1) and independent. Find PDF $f_{x+y}(w)$ by convolution where w=x+y.
So far, this is what I have...
$int_{-infty}^{infty}f_{x}f_{y}(w-x)dx$
$int_{0}^{w}frac{1}{sqrt{2pi}}Exp[frac{-1}{2}(x^2)] * frac{1}{sqrt{2pi}}Exp[frac{-1}{2}((w-x)^2)] dx$
$int_{0}^{w}frac{1}{sqrt{2pi}}Exp[frac{-1}{2}(x^2)]*frac{1}{sqrt{2pi}}Exp[frac{-1}{2}((w^2-2xw+x^2)] dx$
$frac{1}{sqrt{2pi}}Exp[frac{-1}{2}w^2]*int_{0}^{w}frac{1}{sqrt{2pi}}Exp[frac{-1}{2}(-2xw+x^2)dx$]
Not sure where to go from here...I know ultimately the PDF will follow N(0,2)..Should my limits be from 0 to w, or negative infinity to infinity?
Thank you.
probability-distributions normal-distribution convolution
probability-distributions normal-distribution convolution
asked Dec 17 '18 at 4:25
user627099user627099
11
11
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043526%2fderivation-of-sum-of-normal-rvs-pdf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043526%2fderivation-of-sum-of-normal-rvs-pdf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown