Evaluation of $int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$
$begingroup$
In there any way to calculate Integral
$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
by using simple properties of definite integration. I used substitution $tan^{-1}x=t $ and applied by parts but then I am stuck at $intint csc(2t)dt$ How should I proceed? What is the most appropriate method to solve this question?
calculus integration definite-integrals
$endgroup$
add a comment |
$begingroup$
In there any way to calculate Integral
$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
by using simple properties of definite integration. I used substitution $tan^{-1}x=t $ and applied by parts but then I am stuck at $intint csc(2t)dt$ How should I proceed? What is the most appropriate method to solve this question?
calculus integration definite-integrals
$endgroup$
$begingroup$
Hint: Try by parts first, so you have $int {1 over x(x^2+1)} $ and then use partial fractions.
$endgroup$
– Morgormir
Feb 18 '16 at 19:23
$begingroup$
@Morgormir Your integration by parts is incorrect. You should instead get $intfrac{ln{x}}{1+x^{2}}$, which isn't any easier. An elementary antiderivative for this function does not exist.
$endgroup$
– David H
Feb 18 '16 at 19:30
$begingroup$
You are correct, I wrote out the integral with $x^2$ as it's fraction, my mistake.
$endgroup$
– Morgormir
Feb 18 '16 at 20:49
add a comment |
$begingroup$
In there any way to calculate Integral
$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
by using simple properties of definite integration. I used substitution $tan^{-1}x=t $ and applied by parts but then I am stuck at $intint csc(2t)dt$ How should I proceed? What is the most appropriate method to solve this question?
calculus integration definite-integrals
$endgroup$
In there any way to calculate Integral
$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
by using simple properties of definite integration. I used substitution $tan^{-1}x=t $ and applied by parts but then I am stuck at $intint csc(2t)dt$ How should I proceed? What is the most appropriate method to solve this question?
calculus integration definite-integrals
calculus integration definite-integrals
edited Dec 17 '18 at 2:23
DavidG
2,060720
2,060720
asked Feb 18 '16 at 19:17
MathematicsMathematics
1,7331030
1,7331030
$begingroup$
Hint: Try by parts first, so you have $int {1 over x(x^2+1)} $ and then use partial fractions.
$endgroup$
– Morgormir
Feb 18 '16 at 19:23
$begingroup$
@Morgormir Your integration by parts is incorrect. You should instead get $intfrac{ln{x}}{1+x^{2}}$, which isn't any easier. An elementary antiderivative for this function does not exist.
$endgroup$
– David H
Feb 18 '16 at 19:30
$begingroup$
You are correct, I wrote out the integral with $x^2$ as it's fraction, my mistake.
$endgroup$
– Morgormir
Feb 18 '16 at 20:49
add a comment |
$begingroup$
Hint: Try by parts first, so you have $int {1 over x(x^2+1)} $ and then use partial fractions.
$endgroup$
– Morgormir
Feb 18 '16 at 19:23
$begingroup$
@Morgormir Your integration by parts is incorrect. You should instead get $intfrac{ln{x}}{1+x^{2}}$, which isn't any easier. An elementary antiderivative for this function does not exist.
$endgroup$
– David H
Feb 18 '16 at 19:30
$begingroup$
You are correct, I wrote out the integral with $x^2$ as it's fraction, my mistake.
$endgroup$
– Morgormir
Feb 18 '16 at 20:49
$begingroup$
Hint: Try by parts first, so you have $int {1 over x(x^2+1)} $ and then use partial fractions.
$endgroup$
– Morgormir
Feb 18 '16 at 19:23
$begingroup$
Hint: Try by parts first, so you have $int {1 over x(x^2+1)} $ and then use partial fractions.
$endgroup$
– Morgormir
Feb 18 '16 at 19:23
$begingroup$
@Morgormir Your integration by parts is incorrect. You should instead get $intfrac{ln{x}}{1+x^{2}}$, which isn't any easier. An elementary antiderivative for this function does not exist.
$endgroup$
– David H
Feb 18 '16 at 19:30
$begingroup$
@Morgormir Your integration by parts is incorrect. You should instead get $intfrac{ln{x}}{1+x^{2}}$, which isn't any easier. An elementary antiderivative for this function does not exist.
$endgroup$
– David H
Feb 18 '16 at 19:30
$begingroup$
You are correct, I wrote out the integral with $x^2$ as it's fraction, my mistake.
$endgroup$
– Morgormir
Feb 18 '16 at 20:49
$begingroup$
You are correct, I wrote out the integral with $x^2$ as it's fraction, my mistake.
$endgroup$
– Morgormir
Feb 18 '16 at 20:49
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For $x>0$,
$$tan^{-1}(x)=cot^{-1}left(frac1xright)$$
Here,
$$I=int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
Let $x=frac1y$. Then,
$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx=int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{frac1y}left(-frac1{y^2}right)dy=-int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{cot^{-1}y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}-tan^{-1}y}{y}dy=int^{frac{1}{2014}}_{2014} frac{tan^{-1}y-frac{pi}{2}}{y}dy=-I-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}}{y}dy$$
Thus,
$$I=int_{frac{1}{2014}}^{2014} frac{pi}{4y}dy$$
which can be easily solved.
$endgroup$
add a comment |
$begingroup$
A straightforward one: use the substitution $u=1/x$ and the formula:
$$forall xinmathbb{R}_+^*, arctanleft(frac1xright)=fracpi2-arctan(x).$$
For the sake of generality, we'll compute the integral from $1/a$ to $a$ for some $ainmathbb{R}_+^*$:
$$I=int_{1/a}^{a}frac{arctan(x)}{x},mathrm{d}x=int_a^{1/a}uarctan(1/u)left(-frac{mathrm{d}u}{u^2}right)=int_{1/a}^afrac{pi/2-arctan(u)}{u},mathrm{d}u=int_{1/a}^afrac{pi}{2u},mathrm{d}u-I.$$
Hence
$$2I=int_{1/a}^afrac{pi}{2u},mathrm{d}u,$$
i.e.,
$$I=fracpi4int_{1/a}^afrac{mathrm{d}u}u=fracpi4bigl(ln(a)-ln(1/a)bigr)=fracpi2ln(a).$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1661879%2fevaluation-of-int-frac120142014-frac-tan-1xx-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $x>0$,
$$tan^{-1}(x)=cot^{-1}left(frac1xright)$$
Here,
$$I=int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
Let $x=frac1y$. Then,
$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx=int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{frac1y}left(-frac1{y^2}right)dy=-int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{cot^{-1}y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}-tan^{-1}y}{y}dy=int^{frac{1}{2014}}_{2014} frac{tan^{-1}y-frac{pi}{2}}{y}dy=-I-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}}{y}dy$$
Thus,
$$I=int_{frac{1}{2014}}^{2014} frac{pi}{4y}dy$$
which can be easily solved.
$endgroup$
add a comment |
$begingroup$
For $x>0$,
$$tan^{-1}(x)=cot^{-1}left(frac1xright)$$
Here,
$$I=int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
Let $x=frac1y$. Then,
$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx=int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{frac1y}left(-frac1{y^2}right)dy=-int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{cot^{-1}y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}-tan^{-1}y}{y}dy=int^{frac{1}{2014}}_{2014} frac{tan^{-1}y-frac{pi}{2}}{y}dy=-I-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}}{y}dy$$
Thus,
$$I=int_{frac{1}{2014}}^{2014} frac{pi}{4y}dy$$
which can be easily solved.
$endgroup$
add a comment |
$begingroup$
For $x>0$,
$$tan^{-1}(x)=cot^{-1}left(frac1xright)$$
Here,
$$I=int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
Let $x=frac1y$. Then,
$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx=int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{frac1y}left(-frac1{y^2}right)dy=-int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{cot^{-1}y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}-tan^{-1}y}{y}dy=int^{frac{1}{2014}}_{2014} frac{tan^{-1}y-frac{pi}{2}}{y}dy=-I-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}}{y}dy$$
Thus,
$$I=int_{frac{1}{2014}}^{2014} frac{pi}{4y}dy$$
which can be easily solved.
$endgroup$
For $x>0$,
$$tan^{-1}(x)=cot^{-1}left(frac1xright)$$
Here,
$$I=int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
Let $x=frac1y$. Then,
$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx=int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{frac1y}left(-frac1{y^2}right)dy=-int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{cot^{-1}y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}-tan^{-1}y}{y}dy=int^{frac{1}{2014}}_{2014} frac{tan^{-1}y-frac{pi}{2}}{y}dy=-I-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}}{y}dy$$
Thus,
$$I=int_{frac{1}{2014}}^{2014} frac{pi}{4y}dy$$
which can be easily solved.
edited Dec 17 '18 at 2:23
DavidG
2,060720
2,060720
answered Feb 18 '16 at 19:25
GoodDeedsGoodDeeds
10.3k31335
10.3k31335
add a comment |
add a comment |
$begingroup$
A straightforward one: use the substitution $u=1/x$ and the formula:
$$forall xinmathbb{R}_+^*, arctanleft(frac1xright)=fracpi2-arctan(x).$$
For the sake of generality, we'll compute the integral from $1/a$ to $a$ for some $ainmathbb{R}_+^*$:
$$I=int_{1/a}^{a}frac{arctan(x)}{x},mathrm{d}x=int_a^{1/a}uarctan(1/u)left(-frac{mathrm{d}u}{u^2}right)=int_{1/a}^afrac{pi/2-arctan(u)}{u},mathrm{d}u=int_{1/a}^afrac{pi}{2u},mathrm{d}u-I.$$
Hence
$$2I=int_{1/a}^afrac{pi}{2u},mathrm{d}u,$$
i.e.,
$$I=fracpi4int_{1/a}^afrac{mathrm{d}u}u=fracpi4bigl(ln(a)-ln(1/a)bigr)=fracpi2ln(a).$$
$endgroup$
add a comment |
$begingroup$
A straightforward one: use the substitution $u=1/x$ and the formula:
$$forall xinmathbb{R}_+^*, arctanleft(frac1xright)=fracpi2-arctan(x).$$
For the sake of generality, we'll compute the integral from $1/a$ to $a$ for some $ainmathbb{R}_+^*$:
$$I=int_{1/a}^{a}frac{arctan(x)}{x},mathrm{d}x=int_a^{1/a}uarctan(1/u)left(-frac{mathrm{d}u}{u^2}right)=int_{1/a}^afrac{pi/2-arctan(u)}{u},mathrm{d}u=int_{1/a}^afrac{pi}{2u},mathrm{d}u-I.$$
Hence
$$2I=int_{1/a}^afrac{pi}{2u},mathrm{d}u,$$
i.e.,
$$I=fracpi4int_{1/a}^afrac{mathrm{d}u}u=fracpi4bigl(ln(a)-ln(1/a)bigr)=fracpi2ln(a).$$
$endgroup$
add a comment |
$begingroup$
A straightforward one: use the substitution $u=1/x$ and the formula:
$$forall xinmathbb{R}_+^*, arctanleft(frac1xright)=fracpi2-arctan(x).$$
For the sake of generality, we'll compute the integral from $1/a$ to $a$ for some $ainmathbb{R}_+^*$:
$$I=int_{1/a}^{a}frac{arctan(x)}{x},mathrm{d}x=int_a^{1/a}uarctan(1/u)left(-frac{mathrm{d}u}{u^2}right)=int_{1/a}^afrac{pi/2-arctan(u)}{u},mathrm{d}u=int_{1/a}^afrac{pi}{2u},mathrm{d}u-I.$$
Hence
$$2I=int_{1/a}^afrac{pi}{2u},mathrm{d}u,$$
i.e.,
$$I=fracpi4int_{1/a}^afrac{mathrm{d}u}u=fracpi4bigl(ln(a)-ln(1/a)bigr)=fracpi2ln(a).$$
$endgroup$
A straightforward one: use the substitution $u=1/x$ and the formula:
$$forall xinmathbb{R}_+^*, arctanleft(frac1xright)=fracpi2-arctan(x).$$
For the sake of generality, we'll compute the integral from $1/a$ to $a$ for some $ainmathbb{R}_+^*$:
$$I=int_{1/a}^{a}frac{arctan(x)}{x},mathrm{d}x=int_a^{1/a}uarctan(1/u)left(-frac{mathrm{d}u}{u^2}right)=int_{1/a}^afrac{pi/2-arctan(u)}{u},mathrm{d}u=int_{1/a}^afrac{pi}{2u},mathrm{d}u-I.$$
Hence
$$2I=int_{1/a}^afrac{pi}{2u},mathrm{d}u,$$
i.e.,
$$I=fracpi4int_{1/a}^afrac{mathrm{d}u}u=fracpi4bigl(ln(a)-ln(1/a)bigr)=fracpi2ln(a).$$
answered Feb 18 '16 at 19:35
gniourf_gniourfgniourf_gniourf
3,565818
3,565818
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1661879%2fevaluation-of-int-frac120142014-frac-tan-1xx-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: Try by parts first, so you have $int {1 over x(x^2+1)} $ and then use partial fractions.
$endgroup$
– Morgormir
Feb 18 '16 at 19:23
$begingroup$
@Morgormir Your integration by parts is incorrect. You should instead get $intfrac{ln{x}}{1+x^{2}}$, which isn't any easier. An elementary antiderivative for this function does not exist.
$endgroup$
– David H
Feb 18 '16 at 19:30
$begingroup$
You are correct, I wrote out the integral with $x^2$ as it's fraction, my mistake.
$endgroup$
– Morgormir
Feb 18 '16 at 20:49