Evaluation of $int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$












1












$begingroup$


In there any way to calculate Integral





$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$





by using simple properties of definite integration. I used substitution $tan^{-1}x=t $ and applied by parts but then I am stuck at $intint csc(2t)dt$ How should I proceed? What is the most appropriate method to solve this question?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: Try by parts first, so you have $int {1 over x(x^2+1)} $ and then use partial fractions.
    $endgroup$
    – Morgormir
    Feb 18 '16 at 19:23












  • $begingroup$
    @Morgormir Your integration by parts is incorrect. You should instead get $intfrac{ln{x}}{1+x^{2}}$, which isn't any easier. An elementary antiderivative for this function does not exist.
    $endgroup$
    – David H
    Feb 18 '16 at 19:30










  • $begingroup$
    You are correct, I wrote out the integral with $x^2$ as it's fraction, my mistake.
    $endgroup$
    – Morgormir
    Feb 18 '16 at 20:49
















1












$begingroup$


In there any way to calculate Integral





$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$





by using simple properties of definite integration. I used substitution $tan^{-1}x=t $ and applied by parts but then I am stuck at $intint csc(2t)dt$ How should I proceed? What is the most appropriate method to solve this question?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: Try by parts first, so you have $int {1 over x(x^2+1)} $ and then use partial fractions.
    $endgroup$
    – Morgormir
    Feb 18 '16 at 19:23












  • $begingroup$
    @Morgormir Your integration by parts is incorrect. You should instead get $intfrac{ln{x}}{1+x^{2}}$, which isn't any easier. An elementary antiderivative for this function does not exist.
    $endgroup$
    – David H
    Feb 18 '16 at 19:30










  • $begingroup$
    You are correct, I wrote out the integral with $x^2$ as it's fraction, my mistake.
    $endgroup$
    – Morgormir
    Feb 18 '16 at 20:49














1












1








1


3



$begingroup$


In there any way to calculate Integral





$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$





by using simple properties of definite integration. I used substitution $tan^{-1}x=t $ and applied by parts but then I am stuck at $intint csc(2t)dt$ How should I proceed? What is the most appropriate method to solve this question?










share|cite|improve this question











$endgroup$




In there any way to calculate Integral





$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$





by using simple properties of definite integration. I used substitution $tan^{-1}x=t $ and applied by parts but then I am stuck at $intint csc(2t)dt$ How should I proceed? What is the most appropriate method to solve this question?







calculus integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 17 '18 at 2:23









DavidG

2,060720




2,060720










asked Feb 18 '16 at 19:17









MathematicsMathematics

1,7331030




1,7331030












  • $begingroup$
    Hint: Try by parts first, so you have $int {1 over x(x^2+1)} $ and then use partial fractions.
    $endgroup$
    – Morgormir
    Feb 18 '16 at 19:23












  • $begingroup$
    @Morgormir Your integration by parts is incorrect. You should instead get $intfrac{ln{x}}{1+x^{2}}$, which isn't any easier. An elementary antiderivative for this function does not exist.
    $endgroup$
    – David H
    Feb 18 '16 at 19:30










  • $begingroup$
    You are correct, I wrote out the integral with $x^2$ as it's fraction, my mistake.
    $endgroup$
    – Morgormir
    Feb 18 '16 at 20:49


















  • $begingroup$
    Hint: Try by parts first, so you have $int {1 over x(x^2+1)} $ and then use partial fractions.
    $endgroup$
    – Morgormir
    Feb 18 '16 at 19:23












  • $begingroup$
    @Morgormir Your integration by parts is incorrect. You should instead get $intfrac{ln{x}}{1+x^{2}}$, which isn't any easier. An elementary antiderivative for this function does not exist.
    $endgroup$
    – David H
    Feb 18 '16 at 19:30










  • $begingroup$
    You are correct, I wrote out the integral with $x^2$ as it's fraction, my mistake.
    $endgroup$
    – Morgormir
    Feb 18 '16 at 20:49
















$begingroup$
Hint: Try by parts first, so you have $int {1 over x(x^2+1)} $ and then use partial fractions.
$endgroup$
– Morgormir
Feb 18 '16 at 19:23






$begingroup$
Hint: Try by parts first, so you have $int {1 over x(x^2+1)} $ and then use partial fractions.
$endgroup$
– Morgormir
Feb 18 '16 at 19:23














$begingroup$
@Morgormir Your integration by parts is incorrect. You should instead get $intfrac{ln{x}}{1+x^{2}}$, which isn't any easier. An elementary antiderivative for this function does not exist.
$endgroup$
– David H
Feb 18 '16 at 19:30




$begingroup$
@Morgormir Your integration by parts is incorrect. You should instead get $intfrac{ln{x}}{1+x^{2}}$, which isn't any easier. An elementary antiderivative for this function does not exist.
$endgroup$
– David H
Feb 18 '16 at 19:30












$begingroup$
You are correct, I wrote out the integral with $x^2$ as it's fraction, my mistake.
$endgroup$
– Morgormir
Feb 18 '16 at 20:49




$begingroup$
You are correct, I wrote out the integral with $x^2$ as it's fraction, my mistake.
$endgroup$
– Morgormir
Feb 18 '16 at 20:49










2 Answers
2






active

oldest

votes


















6












$begingroup$

For $x>0$,
$$tan^{-1}(x)=cot^{-1}left(frac1xright)$$
Here,
$$I=int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
Let $x=frac1y$. Then,
$$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx=int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{frac1y}left(-frac1{y^2}right)dy=-int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{cot^{-1}y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}-tan^{-1}y}{y}dy=int^{frac{1}{2014}}_{2014} frac{tan^{-1}y-frac{pi}{2}}{y}dy=-I-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}}{y}dy$$
Thus,
$$I=int_{frac{1}{2014}}^{2014} frac{pi}{4y}dy$$
which can be easily solved.






share|cite|improve this answer











$endgroup$





















    6












    $begingroup$

    A straightforward one: use the substitution $u=1/x$ and the formula:
    $$forall xinmathbb{R}_+^*, arctanleft(frac1xright)=fracpi2-arctan(x).$$
    For the sake of generality, we'll compute the integral from $1/a$ to $a$ for some $ainmathbb{R}_+^*$:
    $$I=int_{1/a}^{a}frac{arctan(x)}{x},mathrm{d}x=int_a^{1/a}uarctan(1/u)left(-frac{mathrm{d}u}{u^2}right)=int_{1/a}^afrac{pi/2-arctan(u)}{u},mathrm{d}u=int_{1/a}^afrac{pi}{2u},mathrm{d}u-I.$$
    Hence
    $$2I=int_{1/a}^afrac{pi}{2u},mathrm{d}u,$$
    i.e.,
    $$I=fracpi4int_{1/a}^afrac{mathrm{d}u}u=fracpi4bigl(ln(a)-ln(1/a)bigr)=fracpi2ln(a).$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1661879%2fevaluation-of-int-frac120142014-frac-tan-1xx-dx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      For $x>0$,
      $$tan^{-1}(x)=cot^{-1}left(frac1xright)$$
      Here,
      $$I=int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
      Let $x=frac1y$. Then,
      $$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx=int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{frac1y}left(-frac1{y^2}right)dy=-int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{cot^{-1}y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}-tan^{-1}y}{y}dy=int^{frac{1}{2014}}_{2014} frac{tan^{-1}y-frac{pi}{2}}{y}dy=-I-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}}{y}dy$$
      Thus,
      $$I=int_{frac{1}{2014}}^{2014} frac{pi}{4y}dy$$
      which can be easily solved.






      share|cite|improve this answer











      $endgroup$


















        6












        $begingroup$

        For $x>0$,
        $$tan^{-1}(x)=cot^{-1}left(frac1xright)$$
        Here,
        $$I=int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
        Let $x=frac1y$. Then,
        $$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx=int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{frac1y}left(-frac1{y^2}right)dy=-int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{cot^{-1}y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}-tan^{-1}y}{y}dy=int^{frac{1}{2014}}_{2014} frac{tan^{-1}y-frac{pi}{2}}{y}dy=-I-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}}{y}dy$$
        Thus,
        $$I=int_{frac{1}{2014}}^{2014} frac{pi}{4y}dy$$
        which can be easily solved.






        share|cite|improve this answer











        $endgroup$
















          6












          6








          6





          $begingroup$

          For $x>0$,
          $$tan^{-1}(x)=cot^{-1}left(frac1xright)$$
          Here,
          $$I=int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
          Let $x=frac1y$. Then,
          $$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx=int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{frac1y}left(-frac1{y^2}right)dy=-int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{cot^{-1}y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}-tan^{-1}y}{y}dy=int^{frac{1}{2014}}_{2014} frac{tan^{-1}y-frac{pi}{2}}{y}dy=-I-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}}{y}dy$$
          Thus,
          $$I=int_{frac{1}{2014}}^{2014} frac{pi}{4y}dy$$
          which can be easily solved.






          share|cite|improve this answer











          $endgroup$



          For $x>0$,
          $$tan^{-1}(x)=cot^{-1}left(frac1xright)$$
          Here,
          $$I=int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx$$
          Let $x=frac1y$. Then,
          $$int_{frac{1}{2014}}^{2014} frac{tan^{-1}x}{x} dx=int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{frac1y}left(-frac1{y^2}right)dy=-int^{frac{1}{2014}}_{2014} frac{tan^{-1}frac1y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{cot^{-1}y}{y}dy=-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}-tan^{-1}y}{y}dy=int^{frac{1}{2014}}_{2014} frac{tan^{-1}y-frac{pi}{2}}{y}dy=-I-int^{frac{1}{2014}}_{2014} frac{frac{pi}{2}}{y}dy$$
          Thus,
          $$I=int_{frac{1}{2014}}^{2014} frac{pi}{4y}dy$$
          which can be easily solved.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 17 '18 at 2:23









          DavidG

          2,060720




          2,060720










          answered Feb 18 '16 at 19:25









          GoodDeedsGoodDeeds

          10.3k31335




          10.3k31335























              6












              $begingroup$

              A straightforward one: use the substitution $u=1/x$ and the formula:
              $$forall xinmathbb{R}_+^*, arctanleft(frac1xright)=fracpi2-arctan(x).$$
              For the sake of generality, we'll compute the integral from $1/a$ to $a$ for some $ainmathbb{R}_+^*$:
              $$I=int_{1/a}^{a}frac{arctan(x)}{x},mathrm{d}x=int_a^{1/a}uarctan(1/u)left(-frac{mathrm{d}u}{u^2}right)=int_{1/a}^afrac{pi/2-arctan(u)}{u},mathrm{d}u=int_{1/a}^afrac{pi}{2u},mathrm{d}u-I.$$
              Hence
              $$2I=int_{1/a}^afrac{pi}{2u},mathrm{d}u,$$
              i.e.,
              $$I=fracpi4int_{1/a}^afrac{mathrm{d}u}u=fracpi4bigl(ln(a)-ln(1/a)bigr)=fracpi2ln(a).$$






              share|cite|improve this answer









              $endgroup$


















                6












                $begingroup$

                A straightforward one: use the substitution $u=1/x$ and the formula:
                $$forall xinmathbb{R}_+^*, arctanleft(frac1xright)=fracpi2-arctan(x).$$
                For the sake of generality, we'll compute the integral from $1/a$ to $a$ for some $ainmathbb{R}_+^*$:
                $$I=int_{1/a}^{a}frac{arctan(x)}{x},mathrm{d}x=int_a^{1/a}uarctan(1/u)left(-frac{mathrm{d}u}{u^2}right)=int_{1/a}^afrac{pi/2-arctan(u)}{u},mathrm{d}u=int_{1/a}^afrac{pi}{2u},mathrm{d}u-I.$$
                Hence
                $$2I=int_{1/a}^afrac{pi}{2u},mathrm{d}u,$$
                i.e.,
                $$I=fracpi4int_{1/a}^afrac{mathrm{d}u}u=fracpi4bigl(ln(a)-ln(1/a)bigr)=fracpi2ln(a).$$






                share|cite|improve this answer









                $endgroup$
















                  6












                  6








                  6





                  $begingroup$

                  A straightforward one: use the substitution $u=1/x$ and the formula:
                  $$forall xinmathbb{R}_+^*, arctanleft(frac1xright)=fracpi2-arctan(x).$$
                  For the sake of generality, we'll compute the integral from $1/a$ to $a$ for some $ainmathbb{R}_+^*$:
                  $$I=int_{1/a}^{a}frac{arctan(x)}{x},mathrm{d}x=int_a^{1/a}uarctan(1/u)left(-frac{mathrm{d}u}{u^2}right)=int_{1/a}^afrac{pi/2-arctan(u)}{u},mathrm{d}u=int_{1/a}^afrac{pi}{2u},mathrm{d}u-I.$$
                  Hence
                  $$2I=int_{1/a}^afrac{pi}{2u},mathrm{d}u,$$
                  i.e.,
                  $$I=fracpi4int_{1/a}^afrac{mathrm{d}u}u=fracpi4bigl(ln(a)-ln(1/a)bigr)=fracpi2ln(a).$$






                  share|cite|improve this answer









                  $endgroup$



                  A straightforward one: use the substitution $u=1/x$ and the formula:
                  $$forall xinmathbb{R}_+^*, arctanleft(frac1xright)=fracpi2-arctan(x).$$
                  For the sake of generality, we'll compute the integral from $1/a$ to $a$ for some $ainmathbb{R}_+^*$:
                  $$I=int_{1/a}^{a}frac{arctan(x)}{x},mathrm{d}x=int_a^{1/a}uarctan(1/u)left(-frac{mathrm{d}u}{u^2}right)=int_{1/a}^afrac{pi/2-arctan(u)}{u},mathrm{d}u=int_{1/a}^afrac{pi}{2u},mathrm{d}u-I.$$
                  Hence
                  $$2I=int_{1/a}^afrac{pi}{2u},mathrm{d}u,$$
                  i.e.,
                  $$I=fracpi4int_{1/a}^afrac{mathrm{d}u}u=fracpi4bigl(ln(a)-ln(1/a)bigr)=fracpi2ln(a).$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Feb 18 '16 at 19:35









                  gniourf_gniourfgniourf_gniourf

                  3,565818




                  3,565818






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1661879%2fevaluation-of-int-frac120142014-frac-tan-1xx-dx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna