On complex powers of complex numbers
$begingroup$
For $z,s in mathbb{C}$ and $zneq 0$, set $z^s = exp(s,log z)$ and $-pi < arg z leq pi$. In this setting, I am worried about the cases where I have to be careful in assuming $(z_1z_2)^s = (z_1)^s(z_2)^s$. As long as $s in mathbb{Z}$, I am safe, but what about the rest? For example, if $zin mathbb{H}$, then
begin{equation}
(-z)^s = e^{-pi is}z^s,
end{equation} but
begin{equation}
(-1)^sz^s = e^{pi i s}z^s
end{equation} and both are not equal.
complex-analysis complex-numbers modular-forms
$endgroup$
add a comment |
$begingroup$
For $z,s in mathbb{C}$ and $zneq 0$, set $z^s = exp(s,log z)$ and $-pi < arg z leq pi$. In this setting, I am worried about the cases where I have to be careful in assuming $(z_1z_2)^s = (z_1)^s(z_2)^s$. As long as $s in mathbb{Z}$, I am safe, but what about the rest? For example, if $zin mathbb{H}$, then
begin{equation}
(-z)^s = e^{-pi is}z^s,
end{equation} but
begin{equation}
(-1)^sz^s = e^{pi i s}z^s
end{equation} and both are not equal.
complex-analysis complex-numbers modular-forms
$endgroup$
add a comment |
$begingroup$
For $z,s in mathbb{C}$ and $zneq 0$, set $z^s = exp(s,log z)$ and $-pi < arg z leq pi$. In this setting, I am worried about the cases where I have to be careful in assuming $(z_1z_2)^s = (z_1)^s(z_2)^s$. As long as $s in mathbb{Z}$, I am safe, but what about the rest? For example, if $zin mathbb{H}$, then
begin{equation}
(-z)^s = e^{-pi is}z^s,
end{equation} but
begin{equation}
(-1)^sz^s = e^{pi i s}z^s
end{equation} and both are not equal.
complex-analysis complex-numbers modular-forms
$endgroup$
For $z,s in mathbb{C}$ and $zneq 0$, set $z^s = exp(s,log z)$ and $-pi < arg z leq pi$. In this setting, I am worried about the cases where I have to be careful in assuming $(z_1z_2)^s = (z_1)^s(z_2)^s$. As long as $s in mathbb{Z}$, I am safe, but what about the rest? For example, if $zin mathbb{H}$, then
begin{equation}
(-z)^s = e^{-pi is}z^s,
end{equation} but
begin{equation}
(-1)^sz^s = e^{pi i s}z^s
end{equation} and both are not equal.
complex-analysis complex-numbers modular-forms
complex-analysis complex-numbers modular-forms
edited Dec 17 '18 at 4:18
Tianlalu
3,08621038
3,08621038
asked Dec 17 '18 at 4:14
user166305user166305
1968
1968
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The rule $(zw)^s=z^sw^s$ depends on the equality $log(zw)=log z+log w$. But you need the logarithm to be single valued, which requires limiting the argument to one interval, for instance $(-pi,pi]$ as you did; and this generates the following problem. If $t+u>pi$, then $log (e^{i(t+u)})=i(t+u-2pi)$. Thus when $s=a+ib$, $z_j=r_je^{it_j}$,
begin{align}
(z_1z_2)^s&=exp((a+ib)(log r_1r_2+ i(t_1+t_2-2kpi))\ \
&=r_1^ar_2^a,e^{iblog r_1},e^{iblog r_2},e^{iat_1},e^{iat_2},e^{-bt_1},e^{-bt_2},e^{2bkpi},
end{align}
where $k=0$ if $t_1+t_2leqpi$, and $k=1$ when $t_1+t_2>pi$. On the other hand you have
$$
z_1^sz_2^s=r_1^ar_2^a,e^{iblog r_1},e^{iblog r_2},e^{iat_1},e^{iat_2},e^{-bt_1},e^{-bt_2}.
$$
The two expressions are equal when $t+uleqpi$, and differ by a factor of $e^{2bpi}$ when $t+u>pi$.
In summary, $(z_1z_2)^s=z_1^s+z_2^s$ (in your setup) when $arg z_1+arg z_2leqpi$. This is not terrible, but it prevents you from using the formula in general, when you don't know the arguments of $z_1$ and $z_2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043519%2fon-complex-powers-of-complex-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The rule $(zw)^s=z^sw^s$ depends on the equality $log(zw)=log z+log w$. But you need the logarithm to be single valued, which requires limiting the argument to one interval, for instance $(-pi,pi]$ as you did; and this generates the following problem. If $t+u>pi$, then $log (e^{i(t+u)})=i(t+u-2pi)$. Thus when $s=a+ib$, $z_j=r_je^{it_j}$,
begin{align}
(z_1z_2)^s&=exp((a+ib)(log r_1r_2+ i(t_1+t_2-2kpi))\ \
&=r_1^ar_2^a,e^{iblog r_1},e^{iblog r_2},e^{iat_1},e^{iat_2},e^{-bt_1},e^{-bt_2},e^{2bkpi},
end{align}
where $k=0$ if $t_1+t_2leqpi$, and $k=1$ when $t_1+t_2>pi$. On the other hand you have
$$
z_1^sz_2^s=r_1^ar_2^a,e^{iblog r_1},e^{iblog r_2},e^{iat_1},e^{iat_2},e^{-bt_1},e^{-bt_2}.
$$
The two expressions are equal when $t+uleqpi$, and differ by a factor of $e^{2bpi}$ when $t+u>pi$.
In summary, $(z_1z_2)^s=z_1^s+z_2^s$ (in your setup) when $arg z_1+arg z_2leqpi$. This is not terrible, but it prevents you from using the formula in general, when you don't know the arguments of $z_1$ and $z_2$.
$endgroup$
add a comment |
$begingroup$
The rule $(zw)^s=z^sw^s$ depends on the equality $log(zw)=log z+log w$. But you need the logarithm to be single valued, which requires limiting the argument to one interval, for instance $(-pi,pi]$ as you did; and this generates the following problem. If $t+u>pi$, then $log (e^{i(t+u)})=i(t+u-2pi)$. Thus when $s=a+ib$, $z_j=r_je^{it_j}$,
begin{align}
(z_1z_2)^s&=exp((a+ib)(log r_1r_2+ i(t_1+t_2-2kpi))\ \
&=r_1^ar_2^a,e^{iblog r_1},e^{iblog r_2},e^{iat_1},e^{iat_2},e^{-bt_1},e^{-bt_2},e^{2bkpi},
end{align}
where $k=0$ if $t_1+t_2leqpi$, and $k=1$ when $t_1+t_2>pi$. On the other hand you have
$$
z_1^sz_2^s=r_1^ar_2^a,e^{iblog r_1},e^{iblog r_2},e^{iat_1},e^{iat_2},e^{-bt_1},e^{-bt_2}.
$$
The two expressions are equal when $t+uleqpi$, and differ by a factor of $e^{2bpi}$ when $t+u>pi$.
In summary, $(z_1z_2)^s=z_1^s+z_2^s$ (in your setup) when $arg z_1+arg z_2leqpi$. This is not terrible, but it prevents you from using the formula in general, when you don't know the arguments of $z_1$ and $z_2$.
$endgroup$
add a comment |
$begingroup$
The rule $(zw)^s=z^sw^s$ depends on the equality $log(zw)=log z+log w$. But you need the logarithm to be single valued, which requires limiting the argument to one interval, for instance $(-pi,pi]$ as you did; and this generates the following problem. If $t+u>pi$, then $log (e^{i(t+u)})=i(t+u-2pi)$. Thus when $s=a+ib$, $z_j=r_je^{it_j}$,
begin{align}
(z_1z_2)^s&=exp((a+ib)(log r_1r_2+ i(t_1+t_2-2kpi))\ \
&=r_1^ar_2^a,e^{iblog r_1},e^{iblog r_2},e^{iat_1},e^{iat_2},e^{-bt_1},e^{-bt_2},e^{2bkpi},
end{align}
where $k=0$ if $t_1+t_2leqpi$, and $k=1$ when $t_1+t_2>pi$. On the other hand you have
$$
z_1^sz_2^s=r_1^ar_2^a,e^{iblog r_1},e^{iblog r_2},e^{iat_1},e^{iat_2},e^{-bt_1},e^{-bt_2}.
$$
The two expressions are equal when $t+uleqpi$, and differ by a factor of $e^{2bpi}$ when $t+u>pi$.
In summary, $(z_1z_2)^s=z_1^s+z_2^s$ (in your setup) when $arg z_1+arg z_2leqpi$. This is not terrible, but it prevents you from using the formula in general, when you don't know the arguments of $z_1$ and $z_2$.
$endgroup$
The rule $(zw)^s=z^sw^s$ depends on the equality $log(zw)=log z+log w$. But you need the logarithm to be single valued, which requires limiting the argument to one interval, for instance $(-pi,pi]$ as you did; and this generates the following problem. If $t+u>pi$, then $log (e^{i(t+u)})=i(t+u-2pi)$. Thus when $s=a+ib$, $z_j=r_je^{it_j}$,
begin{align}
(z_1z_2)^s&=exp((a+ib)(log r_1r_2+ i(t_1+t_2-2kpi))\ \
&=r_1^ar_2^a,e^{iblog r_1},e^{iblog r_2},e^{iat_1},e^{iat_2},e^{-bt_1},e^{-bt_2},e^{2bkpi},
end{align}
where $k=0$ if $t_1+t_2leqpi$, and $k=1$ when $t_1+t_2>pi$. On the other hand you have
$$
z_1^sz_2^s=r_1^ar_2^a,e^{iblog r_1},e^{iblog r_2},e^{iat_1},e^{iat_2},e^{-bt_1},e^{-bt_2}.
$$
The two expressions are equal when $t+uleqpi$, and differ by a factor of $e^{2bpi}$ when $t+u>pi$.
In summary, $(z_1z_2)^s=z_1^s+z_2^s$ (in your setup) when $arg z_1+arg z_2leqpi$. This is not terrible, but it prevents you from using the formula in general, when you don't know the arguments of $z_1$ and $z_2$.
answered Dec 17 '18 at 4:51
Martin ArgeramiMartin Argerami
125k1178178
125k1178178
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043519%2fon-complex-powers-of-complex-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown