Representing an integral as a finite sum
$begingroup$
Question: If $a$ is in an arbitrary commensurable ratio to $pi$, that is $a=tfrac {mpi}n$, then if $m+n$ is odd$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{n-1}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}{2n}right)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}{2n}right)}{mathrm dx}right]$$and when $m+n$ is even$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{(n-1)/2}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}nright)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}nright)}{mathrm dx}right]$$
I’m just having difficulty finding out where to start. Since the integral equals an infinite sum, it might be wise to start off with a taylor expansion of some sort. However, which function to expand I’m not very sure.
If you guys have any idea, I would be happy to hear them. Thanks!
real-analysis calculus integration definite-integrals
$endgroup$
add a comment |
$begingroup$
Question: If $a$ is in an arbitrary commensurable ratio to $pi$, that is $a=tfrac {mpi}n$, then if $m+n$ is odd$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{n-1}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}{2n}right)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}{2n}right)}{mathrm dx}right]$$and when $m+n$ is even$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{(n-1)/2}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}nright)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}nright)}{mathrm dx}right]$$
I’m just having difficulty finding out where to start. Since the integral equals an infinite sum, it might be wise to start off with a taylor expansion of some sort. However, which function to expand I’m not very sure.
If you guys have any idea, I would be happy to hear them. Thanks!
real-analysis calculus integration definite-integrals
$endgroup$
add a comment |
$begingroup$
Question: If $a$ is in an arbitrary commensurable ratio to $pi$, that is $a=tfrac {mpi}n$, then if $m+n$ is odd$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{n-1}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}{2n}right)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}{2n}right)}{mathrm dx}right]$$and when $m+n$ is even$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{(n-1)/2}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}nright)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}nright)}{mathrm dx}right]$$
I’m just having difficulty finding out where to start. Since the integral equals an infinite sum, it might be wise to start off with a taylor expansion of some sort. However, which function to expand I’m not very sure.
If you guys have any idea, I would be happy to hear them. Thanks!
real-analysis calculus integration definite-integrals
$endgroup$
Question: If $a$ is in an arbitrary commensurable ratio to $pi$, that is $a=tfrac {mpi}n$, then if $m+n$ is odd$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{n-1}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}{2n}right)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}{2n}right)}{mathrm dx}right]$$and when $m+n$ is even$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{(n-1)/2}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}nright)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}nright)}{mathrm dx}right]$$
I’m just having difficulty finding out where to start. Since the integral equals an infinite sum, it might be wise to start off with a taylor expansion of some sort. However, which function to expand I’m not very sure.
If you guys have any idea, I would be happy to hear them. Thanks!
real-analysis calculus integration definite-integrals
real-analysis calculus integration definite-integrals
asked Dec 17 '18 at 5:07
CrescendoCrescendo
2,2951625
2,2951625
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: Expand the $dfrac{sin a}{1+2ycos a+y^2}$ and show
$$frac {y}{1+2ycos a+y^2}=sum_{ngeq1}(-1)^{n-1}dfrac{sin na}{sin a}y^n$$
$endgroup$
$begingroup$
Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
$endgroup$
– Frank W.
Dec 17 '18 at 16:13
$begingroup$
@Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
$endgroup$
– Crescendo
Dec 18 '18 at 5:21
$begingroup$
Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
$endgroup$
– Nosrati
Dec 18 '18 at 5:41
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043549%2frepresenting-an-integral-as-a-finite-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Expand the $dfrac{sin a}{1+2ycos a+y^2}$ and show
$$frac {y}{1+2ycos a+y^2}=sum_{ngeq1}(-1)^{n-1}dfrac{sin na}{sin a}y^n$$
$endgroup$
$begingroup$
Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
$endgroup$
– Frank W.
Dec 17 '18 at 16:13
$begingroup$
@Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
$endgroup$
– Crescendo
Dec 18 '18 at 5:21
$begingroup$
Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
$endgroup$
– Nosrati
Dec 18 '18 at 5:41
add a comment |
$begingroup$
Hint: Expand the $dfrac{sin a}{1+2ycos a+y^2}$ and show
$$frac {y}{1+2ycos a+y^2}=sum_{ngeq1}(-1)^{n-1}dfrac{sin na}{sin a}y^n$$
$endgroup$
$begingroup$
Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
$endgroup$
– Frank W.
Dec 17 '18 at 16:13
$begingroup$
@Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
$endgroup$
– Crescendo
Dec 18 '18 at 5:21
$begingroup$
Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
$endgroup$
– Nosrati
Dec 18 '18 at 5:41
add a comment |
$begingroup$
Hint: Expand the $dfrac{sin a}{1+2ycos a+y^2}$ and show
$$frac {y}{1+2ycos a+y^2}=sum_{ngeq1}(-1)^{n-1}dfrac{sin na}{sin a}y^n$$
$endgroup$
Hint: Expand the $dfrac{sin a}{1+2ycos a+y^2}$ and show
$$frac {y}{1+2ycos a+y^2}=sum_{ngeq1}(-1)^{n-1}dfrac{sin na}{sin a}y^n$$
answered Dec 17 '18 at 5:35
NosratiNosrati
26.5k62354
26.5k62354
$begingroup$
Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
$endgroup$
– Frank W.
Dec 17 '18 at 16:13
$begingroup$
@Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
$endgroup$
– Crescendo
Dec 18 '18 at 5:21
$begingroup$
Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
$endgroup$
– Nosrati
Dec 18 '18 at 5:41
add a comment |
$begingroup$
Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
$endgroup$
– Frank W.
Dec 17 '18 at 16:13
$begingroup$
@Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
$endgroup$
– Crescendo
Dec 18 '18 at 5:21
$begingroup$
Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
$endgroup$
– Nosrati
Dec 18 '18 at 5:41
$begingroup$
Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
$endgroup$
– Frank W.
Dec 17 '18 at 16:13
$begingroup$
Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
$endgroup$
– Frank W.
Dec 17 '18 at 16:13
$begingroup$
@Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
$endgroup$
– Crescendo
Dec 18 '18 at 5:21
$begingroup$
@Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
$endgroup$
– Crescendo
Dec 18 '18 at 5:21
$begingroup$
Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
$endgroup$
– Nosrati
Dec 18 '18 at 5:41
$begingroup$
Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
$endgroup$
– Nosrati
Dec 18 '18 at 5:41
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043549%2frepresenting-an-integral-as-a-finite-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown