Limit of a convolution 2
$begingroup$
Let $phi$ be a non-negative test function with total integral =1 and with support in the ball of radius 1 and centered at the origin in $mathbb{R}^{n}$. Set $phi_{t}(x) =t^{-n}phi(x/t)$. Is the following limit
$$limsup_{trightarrow0}int_{mathbb{R}^{n}}|Deltaphi_{t}(y)|dy$$
bounded? ($Delta$ is the laplacian)
real-analysis distribution-theory
$endgroup$
add a comment |
$begingroup$
Let $phi$ be a non-negative test function with total integral =1 and with support in the ball of radius 1 and centered at the origin in $mathbb{R}^{n}$. Set $phi_{t}(x) =t^{-n}phi(x/t)$. Is the following limit
$$limsup_{trightarrow0}int_{mathbb{R}^{n}}|Deltaphi_{t}(y)|dy$$
bounded? ($Delta$ is the laplacian)
real-analysis distribution-theory
$endgroup$
$begingroup$
Where is the convolution here?
$endgroup$
– TZakrevskiy
Oct 4 '17 at 8:17
add a comment |
$begingroup$
Let $phi$ be a non-negative test function with total integral =1 and with support in the ball of radius 1 and centered at the origin in $mathbb{R}^{n}$. Set $phi_{t}(x) =t^{-n}phi(x/t)$. Is the following limit
$$limsup_{trightarrow0}int_{mathbb{R}^{n}}|Deltaphi_{t}(y)|dy$$
bounded? ($Delta$ is the laplacian)
real-analysis distribution-theory
$endgroup$
Let $phi$ be a non-negative test function with total integral =1 and with support in the ball of radius 1 and centered at the origin in $mathbb{R}^{n}$. Set $phi_{t}(x) =t^{-n}phi(x/t)$. Is the following limit
$$limsup_{trightarrow0}int_{mathbb{R}^{n}}|Deltaphi_{t}(y)|dy$$
bounded? ($Delta$ is the laplacian)
real-analysis distribution-theory
real-analysis distribution-theory
edited Dec 17 '18 at 5:33
M. Rahmat
asked Sep 30 '17 at 1:58
M. RahmatM. Rahmat
332212
332212
$begingroup$
Where is the convolution here?
$endgroup$
– TZakrevskiy
Oct 4 '17 at 8:17
add a comment |
$begingroup$
Where is the convolution here?
$endgroup$
– TZakrevskiy
Oct 4 '17 at 8:17
$begingroup$
Where is the convolution here?
$endgroup$
– TZakrevskiy
Oct 4 '17 at 8:17
$begingroup$
Where is the convolution here?
$endgroup$
– TZakrevskiy
Oct 4 '17 at 8:17
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For $t>0$ we can write by definition that
$$int_{Bbb R^n} |Delta phi_t(y)|dy = int_{Bbb R^n} t^{-n}| (partial_{y_1}^2 +ldots+partial_{y_n}^2) phi(y/t)|dy = int_{Bbb R^n} t^{-n-2}| (Delta phi)(y/t)|dy $$
$$= int_{Bbb R^n} t^{-2}| (Delta phi)(u)|du. $$
Therefore, unless $int_{Bbb R^n}| (Delta phi)(u)|du=0$, you limit diverges to $+infty$. On the other hand, compactly supported harmonic functions are identically zero, therefore for your function $phi$ you have $int_{Bbb R^n}| (Delta phi)(u)|du>0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2451071%2flimit-of-a-convolution-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $t>0$ we can write by definition that
$$int_{Bbb R^n} |Delta phi_t(y)|dy = int_{Bbb R^n} t^{-n}| (partial_{y_1}^2 +ldots+partial_{y_n}^2) phi(y/t)|dy = int_{Bbb R^n} t^{-n-2}| (Delta phi)(y/t)|dy $$
$$= int_{Bbb R^n} t^{-2}| (Delta phi)(u)|du. $$
Therefore, unless $int_{Bbb R^n}| (Delta phi)(u)|du=0$, you limit diverges to $+infty$. On the other hand, compactly supported harmonic functions are identically zero, therefore for your function $phi$ you have $int_{Bbb R^n}| (Delta phi)(u)|du>0$.
$endgroup$
add a comment |
$begingroup$
For $t>0$ we can write by definition that
$$int_{Bbb R^n} |Delta phi_t(y)|dy = int_{Bbb R^n} t^{-n}| (partial_{y_1}^2 +ldots+partial_{y_n}^2) phi(y/t)|dy = int_{Bbb R^n} t^{-n-2}| (Delta phi)(y/t)|dy $$
$$= int_{Bbb R^n} t^{-2}| (Delta phi)(u)|du. $$
Therefore, unless $int_{Bbb R^n}| (Delta phi)(u)|du=0$, you limit diverges to $+infty$. On the other hand, compactly supported harmonic functions are identically zero, therefore for your function $phi$ you have $int_{Bbb R^n}| (Delta phi)(u)|du>0$.
$endgroup$
add a comment |
$begingroup$
For $t>0$ we can write by definition that
$$int_{Bbb R^n} |Delta phi_t(y)|dy = int_{Bbb R^n} t^{-n}| (partial_{y_1}^2 +ldots+partial_{y_n}^2) phi(y/t)|dy = int_{Bbb R^n} t^{-n-2}| (Delta phi)(y/t)|dy $$
$$= int_{Bbb R^n} t^{-2}| (Delta phi)(u)|du. $$
Therefore, unless $int_{Bbb R^n}| (Delta phi)(u)|du=0$, you limit diverges to $+infty$. On the other hand, compactly supported harmonic functions are identically zero, therefore for your function $phi$ you have $int_{Bbb R^n}| (Delta phi)(u)|du>0$.
$endgroup$
For $t>0$ we can write by definition that
$$int_{Bbb R^n} |Delta phi_t(y)|dy = int_{Bbb R^n} t^{-n}| (partial_{y_1}^2 +ldots+partial_{y_n}^2) phi(y/t)|dy = int_{Bbb R^n} t^{-n-2}| (Delta phi)(y/t)|dy $$
$$= int_{Bbb R^n} t^{-2}| (Delta phi)(u)|du. $$
Therefore, unless $int_{Bbb R^n}| (Delta phi)(u)|du=0$, you limit diverges to $+infty$. On the other hand, compactly supported harmonic functions are identically zero, therefore for your function $phi$ you have $int_{Bbb R^n}| (Delta phi)(u)|du>0$.
answered Oct 4 '17 at 8:42
TZakrevskiyTZakrevskiy
20.1k12354
20.1k12354
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2451071%2flimit-of-a-convolution-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Where is the convolution here?
$endgroup$
– TZakrevskiy
Oct 4 '17 at 8:17