Limit of a convolution 2












0












$begingroup$


Let $phi$ be a non-negative test function with total integral =1 and with support in the ball of radius 1 and centered at the origin in $mathbb{R}^{n}$. Set $phi_{t}(x) =t^{-n}phi(x/t)$. Is the following limit
$$limsup_{trightarrow0}int_{mathbb{R}^{n}}|Deltaphi_{t}(y)|dy$$
bounded? ($Delta$ is the laplacian)










share|cite|improve this question











$endgroup$












  • $begingroup$
    Where is the convolution here?
    $endgroup$
    – TZakrevskiy
    Oct 4 '17 at 8:17
















0












$begingroup$


Let $phi$ be a non-negative test function with total integral =1 and with support in the ball of radius 1 and centered at the origin in $mathbb{R}^{n}$. Set $phi_{t}(x) =t^{-n}phi(x/t)$. Is the following limit
$$limsup_{trightarrow0}int_{mathbb{R}^{n}}|Deltaphi_{t}(y)|dy$$
bounded? ($Delta$ is the laplacian)










share|cite|improve this question











$endgroup$












  • $begingroup$
    Where is the convolution here?
    $endgroup$
    – TZakrevskiy
    Oct 4 '17 at 8:17














0












0








0





$begingroup$


Let $phi$ be a non-negative test function with total integral =1 and with support in the ball of radius 1 and centered at the origin in $mathbb{R}^{n}$. Set $phi_{t}(x) =t^{-n}phi(x/t)$. Is the following limit
$$limsup_{trightarrow0}int_{mathbb{R}^{n}}|Deltaphi_{t}(y)|dy$$
bounded? ($Delta$ is the laplacian)










share|cite|improve this question











$endgroup$




Let $phi$ be a non-negative test function with total integral =1 and with support in the ball of radius 1 and centered at the origin in $mathbb{R}^{n}$. Set $phi_{t}(x) =t^{-n}phi(x/t)$. Is the following limit
$$limsup_{trightarrow0}int_{mathbb{R}^{n}}|Deltaphi_{t}(y)|dy$$
bounded? ($Delta$ is the laplacian)







real-analysis distribution-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 17 '18 at 5:33







M. Rahmat

















asked Sep 30 '17 at 1:58









M. RahmatM. Rahmat

332212




332212












  • $begingroup$
    Where is the convolution here?
    $endgroup$
    – TZakrevskiy
    Oct 4 '17 at 8:17


















  • $begingroup$
    Where is the convolution here?
    $endgroup$
    – TZakrevskiy
    Oct 4 '17 at 8:17
















$begingroup$
Where is the convolution here?
$endgroup$
– TZakrevskiy
Oct 4 '17 at 8:17




$begingroup$
Where is the convolution here?
$endgroup$
– TZakrevskiy
Oct 4 '17 at 8:17










1 Answer
1






active

oldest

votes


















1












$begingroup$

For $t>0$ we can write by definition that
$$int_{Bbb R^n} |Delta phi_t(y)|dy = int_{Bbb R^n} t^{-n}| (partial_{y_1}^2 +ldots+partial_{y_n}^2) phi(y/t)|dy = int_{Bbb R^n} t^{-n-2}| (Delta phi)(y/t)|dy $$
$$= int_{Bbb R^n} t^{-2}| (Delta phi)(u)|du. $$



Therefore, unless $int_{Bbb R^n}| (Delta phi)(u)|du=0$, you limit diverges to $+infty$. On the other hand, compactly supported harmonic functions are identically zero, therefore for your function $phi$ you have $int_{Bbb R^n}| (Delta phi)(u)|du>0$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2451071%2flimit-of-a-convolution-2%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    For $t>0$ we can write by definition that
    $$int_{Bbb R^n} |Delta phi_t(y)|dy = int_{Bbb R^n} t^{-n}| (partial_{y_1}^2 +ldots+partial_{y_n}^2) phi(y/t)|dy = int_{Bbb R^n} t^{-n-2}| (Delta phi)(y/t)|dy $$
    $$= int_{Bbb R^n} t^{-2}| (Delta phi)(u)|du. $$



    Therefore, unless $int_{Bbb R^n}| (Delta phi)(u)|du=0$, you limit diverges to $+infty$. On the other hand, compactly supported harmonic functions are identically zero, therefore for your function $phi$ you have $int_{Bbb R^n}| (Delta phi)(u)|du>0$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      For $t>0$ we can write by definition that
      $$int_{Bbb R^n} |Delta phi_t(y)|dy = int_{Bbb R^n} t^{-n}| (partial_{y_1}^2 +ldots+partial_{y_n}^2) phi(y/t)|dy = int_{Bbb R^n} t^{-n-2}| (Delta phi)(y/t)|dy $$
      $$= int_{Bbb R^n} t^{-2}| (Delta phi)(u)|du. $$



      Therefore, unless $int_{Bbb R^n}| (Delta phi)(u)|du=0$, you limit diverges to $+infty$. On the other hand, compactly supported harmonic functions are identically zero, therefore for your function $phi$ you have $int_{Bbb R^n}| (Delta phi)(u)|du>0$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        For $t>0$ we can write by definition that
        $$int_{Bbb R^n} |Delta phi_t(y)|dy = int_{Bbb R^n} t^{-n}| (partial_{y_1}^2 +ldots+partial_{y_n}^2) phi(y/t)|dy = int_{Bbb R^n} t^{-n-2}| (Delta phi)(y/t)|dy $$
        $$= int_{Bbb R^n} t^{-2}| (Delta phi)(u)|du. $$



        Therefore, unless $int_{Bbb R^n}| (Delta phi)(u)|du=0$, you limit diverges to $+infty$. On the other hand, compactly supported harmonic functions are identically zero, therefore for your function $phi$ you have $int_{Bbb R^n}| (Delta phi)(u)|du>0$.






        share|cite|improve this answer









        $endgroup$



        For $t>0$ we can write by definition that
        $$int_{Bbb R^n} |Delta phi_t(y)|dy = int_{Bbb R^n} t^{-n}| (partial_{y_1}^2 +ldots+partial_{y_n}^2) phi(y/t)|dy = int_{Bbb R^n} t^{-n-2}| (Delta phi)(y/t)|dy $$
        $$= int_{Bbb R^n} t^{-2}| (Delta phi)(u)|du. $$



        Therefore, unless $int_{Bbb R^n}| (Delta phi)(u)|du=0$, you limit diverges to $+infty$. On the other hand, compactly supported harmonic functions are identically zero, therefore for your function $phi$ you have $int_{Bbb R^n}| (Delta phi)(u)|du>0$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Oct 4 '17 at 8:42









        TZakrevskiyTZakrevskiy

        20.1k12354




        20.1k12354






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2451071%2flimit-of-a-convolution-2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna