Show that $ |a_n| leq 2(1-alpha)$ for every $n$
$begingroup$
Suppose that $g(z)=1+sum_{n=1}^{infty}a_nz^n$ is analytic for $|z|<1$, with $Re(g(z))> alpha$. Show that $ |a_n| leq 2(1-alpha)$ for every $n$.
Answer:
Since $Re(g(z))>alpha$ implies $g(z)$ is bounded, say $|g(z)|>alpha$.
Then,
$g(z)=1+sum_{n=1}^{infty}a_nz^n \ Rightarrow |g(z)| leq 1+ sum |a_nz^n| $
any hints for showing this.
complex-analysis
$endgroup$
add a comment |
$begingroup$
Suppose that $g(z)=1+sum_{n=1}^{infty}a_nz^n$ is analytic for $|z|<1$, with $Re(g(z))> alpha$. Show that $ |a_n| leq 2(1-alpha)$ for every $n$.
Answer:
Since $Re(g(z))>alpha$ implies $g(z)$ is bounded, say $|g(z)|>alpha$.
Then,
$g(z)=1+sum_{n=1}^{infty}a_nz^n \ Rightarrow |g(z)| leq 1+ sum |a_nz^n| $
any hints for showing this.
complex-analysis
$endgroup$
add a comment |
$begingroup$
Suppose that $g(z)=1+sum_{n=1}^{infty}a_nz^n$ is analytic for $|z|<1$, with $Re(g(z))> alpha$. Show that $ |a_n| leq 2(1-alpha)$ for every $n$.
Answer:
Since $Re(g(z))>alpha$ implies $g(z)$ is bounded, say $|g(z)|>alpha$.
Then,
$g(z)=1+sum_{n=1}^{infty}a_nz^n \ Rightarrow |g(z)| leq 1+ sum |a_nz^n| $
any hints for showing this.
complex-analysis
$endgroup$
Suppose that $g(z)=1+sum_{n=1}^{infty}a_nz^n$ is analytic for $|z|<1$, with $Re(g(z))> alpha$. Show that $ |a_n| leq 2(1-alpha)$ for every $n$.
Answer:
Since $Re(g(z))>alpha$ implies $g(z)$ is bounded, say $|g(z)|>alpha$.
Then,
$g(z)=1+sum_{n=1}^{infty}a_nz^n \ Rightarrow |g(z)| leq 1+ sum |a_nz^n| $
any hints for showing this.
complex-analysis
complex-analysis
asked Dec 17 '18 at 4:30
M. A. SARKARM. A. SARKAR
2,1811619
2,1811619
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
One method is using Carathéodory lemma, since for
$$dfrac{g(z)-alpha}{1-alpha}=1+sum_{ngeqslant1}dfrac{a_n}{1-alpha}z^n$$
we have ${bf Re}dfrac{g(z)-alpha}{1-alpha}>0$ where $alpha<1$, then $dfrac{g(z)-alpha}{1-alpha}$ is subordinate to $dfrac{1+z}{1-z}$, and Carathéodory lemma says for such function $left|dfrac{a_n}{1-alpha}right|leqslant2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043532%2fshow-that-a-n-leq-21-alpha-for-every-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One method is using Carathéodory lemma, since for
$$dfrac{g(z)-alpha}{1-alpha}=1+sum_{ngeqslant1}dfrac{a_n}{1-alpha}z^n$$
we have ${bf Re}dfrac{g(z)-alpha}{1-alpha}>0$ where $alpha<1$, then $dfrac{g(z)-alpha}{1-alpha}$ is subordinate to $dfrac{1+z}{1-z}$, and Carathéodory lemma says for such function $left|dfrac{a_n}{1-alpha}right|leqslant2$.
$endgroup$
add a comment |
$begingroup$
One method is using Carathéodory lemma, since for
$$dfrac{g(z)-alpha}{1-alpha}=1+sum_{ngeqslant1}dfrac{a_n}{1-alpha}z^n$$
we have ${bf Re}dfrac{g(z)-alpha}{1-alpha}>0$ where $alpha<1$, then $dfrac{g(z)-alpha}{1-alpha}$ is subordinate to $dfrac{1+z}{1-z}$, and Carathéodory lemma says for such function $left|dfrac{a_n}{1-alpha}right|leqslant2$.
$endgroup$
add a comment |
$begingroup$
One method is using Carathéodory lemma, since for
$$dfrac{g(z)-alpha}{1-alpha}=1+sum_{ngeqslant1}dfrac{a_n}{1-alpha}z^n$$
we have ${bf Re}dfrac{g(z)-alpha}{1-alpha}>0$ where $alpha<1$, then $dfrac{g(z)-alpha}{1-alpha}$ is subordinate to $dfrac{1+z}{1-z}$, and Carathéodory lemma says for such function $left|dfrac{a_n}{1-alpha}right|leqslant2$.
$endgroup$
One method is using Carathéodory lemma, since for
$$dfrac{g(z)-alpha}{1-alpha}=1+sum_{ngeqslant1}dfrac{a_n}{1-alpha}z^n$$
we have ${bf Re}dfrac{g(z)-alpha}{1-alpha}>0$ where $alpha<1$, then $dfrac{g(z)-alpha}{1-alpha}$ is subordinate to $dfrac{1+z}{1-z}$, and Carathéodory lemma says for such function $left|dfrac{a_n}{1-alpha}right|leqslant2$.
answered Dec 17 '18 at 4:50
NosratiNosrati
26.5k62354
26.5k62354
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043532%2fshow-that-a-n-leq-21-alpha-for-every-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown