Inverse of identity minus exponential matrix












2












$begingroup$


I am trying to analytically find the inverse of a matrix given by:
begin{align}
W = left( I - alpha e^A right)^{-1},
end{align}

where $I$ is the identity matrix of appropriate size, $e^A$ denotes elementwise exponential of $A$ and
begin{align}
A = begin{bmatrix}
frac{ (1-1)^2 }{ sigma^2 } & frac{ (2-1)^2 }{ sigma^2 } &
frac{ (3-1)^2 }{ sigma^2 } & dots & frac{ (n-1)^2 }{ sigma^2 } \
frac{ (1-2)^2 }{ sigma^2 } & frac{ (2-2)^2 }{ sigma^2 } &
frac{ (3-2)^2 }{ sigma^2 } & dots & frac{ (n-2)^2 }{ sigma^2 } \
vdots & vdots & vdots & ddots & vdots \
frac{ (1-N)^2 }{ sigma^2 } & frac{ (2-N)^2 }{ sigma^2 } &
frac{ (3-N)^2 }{ sigma^2 } & dots & frac{ (N-N)^2 }{ sigma^2 } \
end{bmatrix},
end{align}

so that I'm trying to find
begin{align}
W = begin{bmatrix}
1 - alpha exp{ left( frac{ 0^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ 1^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ 2^2 }{ sigma^2 } right) } &
dots &
- alpha exp{ left( frac{ (n-1)^2 }{ sigma^2 } right) } \
- alpha exp{ left( frac{ 1^2 }{ sigma^2 } right) } &
1 - alpha exp{ left( frac{ 0^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ 1^2 }{ sigma^2 } right) } &
dots &
- alpha exp{ left( frac{ (n-2)^2 }{ sigma^2 } right) } \
vdots & vdots & vdots & ddots & vdots \
- alpha exp{ left( frac{ (1-N)^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ (2-N)^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ (3-N)^2 }{ sigma^2 } right) } &
dots &
1 - alpha exp{ left( frac{ (N-N)^2 }{ sigma^2 } right) } \
end{bmatrix}^{-1}.
end{align}



Any help would be much appreciated!



Thank you very much,



Katie










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are you trying to find $W^{-1}$? That would be the last matrix because $(A^{-1})^{-1}$...
    $endgroup$
    – Viktor Glombik
    Dec 20 '18 at 21:08










  • $begingroup$
    Your matrix $W$ has only zeros on the diagonal and is symmetric, have you tried diagonalisation?
    $endgroup$
    – Viktor Glombik
    Dec 20 '18 at 21:09






  • 1




    $begingroup$
    How do you define $e^A$ ?
    $endgroup$
    – Damien
    Dec 20 '18 at 21:21










  • $begingroup$
    Thank you everyone for your interest in my question. I'm trying to find W, as opposed to $W^{-1}$, as that would simply be $I - alpha e^A$, which would be wonderfully easy! W unfortunately does not have 0's on the diagonal, but rather $1-alpha$. I have looked at diagonalisation but haven't made much progress. Regarding the definition of $e^A$, I wondered if there were multiple definitions of a matrix exponential, which is why I included the expanded matrix at the end. I've simply taken the exponential of each matrix element. This may be wrong? Thanks again, Katie.
    $endgroup$
    – Katie
    Dec 20 '18 at 22:18








  • 1




    $begingroup$
    The classical definition of $e^A$ corresponds to en.wikipedia.org/wiki/Matrix_exponential
    $endgroup$
    – Damien
    Dec 21 '18 at 14:38
















2












$begingroup$


I am trying to analytically find the inverse of a matrix given by:
begin{align}
W = left( I - alpha e^A right)^{-1},
end{align}

where $I$ is the identity matrix of appropriate size, $e^A$ denotes elementwise exponential of $A$ and
begin{align}
A = begin{bmatrix}
frac{ (1-1)^2 }{ sigma^2 } & frac{ (2-1)^2 }{ sigma^2 } &
frac{ (3-1)^2 }{ sigma^2 } & dots & frac{ (n-1)^2 }{ sigma^2 } \
frac{ (1-2)^2 }{ sigma^2 } & frac{ (2-2)^2 }{ sigma^2 } &
frac{ (3-2)^2 }{ sigma^2 } & dots & frac{ (n-2)^2 }{ sigma^2 } \
vdots & vdots & vdots & ddots & vdots \
frac{ (1-N)^2 }{ sigma^2 } & frac{ (2-N)^2 }{ sigma^2 } &
frac{ (3-N)^2 }{ sigma^2 } & dots & frac{ (N-N)^2 }{ sigma^2 } \
end{bmatrix},
end{align}

so that I'm trying to find
begin{align}
W = begin{bmatrix}
1 - alpha exp{ left( frac{ 0^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ 1^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ 2^2 }{ sigma^2 } right) } &
dots &
- alpha exp{ left( frac{ (n-1)^2 }{ sigma^2 } right) } \
- alpha exp{ left( frac{ 1^2 }{ sigma^2 } right) } &
1 - alpha exp{ left( frac{ 0^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ 1^2 }{ sigma^2 } right) } &
dots &
- alpha exp{ left( frac{ (n-2)^2 }{ sigma^2 } right) } \
vdots & vdots & vdots & ddots & vdots \
- alpha exp{ left( frac{ (1-N)^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ (2-N)^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ (3-N)^2 }{ sigma^2 } right) } &
dots &
1 - alpha exp{ left( frac{ (N-N)^2 }{ sigma^2 } right) } \
end{bmatrix}^{-1}.
end{align}



Any help would be much appreciated!



Thank you very much,



Katie










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are you trying to find $W^{-1}$? That would be the last matrix because $(A^{-1})^{-1}$...
    $endgroup$
    – Viktor Glombik
    Dec 20 '18 at 21:08










  • $begingroup$
    Your matrix $W$ has only zeros on the diagonal and is symmetric, have you tried diagonalisation?
    $endgroup$
    – Viktor Glombik
    Dec 20 '18 at 21:09






  • 1




    $begingroup$
    How do you define $e^A$ ?
    $endgroup$
    – Damien
    Dec 20 '18 at 21:21










  • $begingroup$
    Thank you everyone for your interest in my question. I'm trying to find W, as opposed to $W^{-1}$, as that would simply be $I - alpha e^A$, which would be wonderfully easy! W unfortunately does not have 0's on the diagonal, but rather $1-alpha$. I have looked at diagonalisation but haven't made much progress. Regarding the definition of $e^A$, I wondered if there were multiple definitions of a matrix exponential, which is why I included the expanded matrix at the end. I've simply taken the exponential of each matrix element. This may be wrong? Thanks again, Katie.
    $endgroup$
    – Katie
    Dec 20 '18 at 22:18








  • 1




    $begingroup$
    The classical definition of $e^A$ corresponds to en.wikipedia.org/wiki/Matrix_exponential
    $endgroup$
    – Damien
    Dec 21 '18 at 14:38














2












2








2


2



$begingroup$


I am trying to analytically find the inverse of a matrix given by:
begin{align}
W = left( I - alpha e^A right)^{-1},
end{align}

where $I$ is the identity matrix of appropriate size, $e^A$ denotes elementwise exponential of $A$ and
begin{align}
A = begin{bmatrix}
frac{ (1-1)^2 }{ sigma^2 } & frac{ (2-1)^2 }{ sigma^2 } &
frac{ (3-1)^2 }{ sigma^2 } & dots & frac{ (n-1)^2 }{ sigma^2 } \
frac{ (1-2)^2 }{ sigma^2 } & frac{ (2-2)^2 }{ sigma^2 } &
frac{ (3-2)^2 }{ sigma^2 } & dots & frac{ (n-2)^2 }{ sigma^2 } \
vdots & vdots & vdots & ddots & vdots \
frac{ (1-N)^2 }{ sigma^2 } & frac{ (2-N)^2 }{ sigma^2 } &
frac{ (3-N)^2 }{ sigma^2 } & dots & frac{ (N-N)^2 }{ sigma^2 } \
end{bmatrix},
end{align}

so that I'm trying to find
begin{align}
W = begin{bmatrix}
1 - alpha exp{ left( frac{ 0^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ 1^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ 2^2 }{ sigma^2 } right) } &
dots &
- alpha exp{ left( frac{ (n-1)^2 }{ sigma^2 } right) } \
- alpha exp{ left( frac{ 1^2 }{ sigma^2 } right) } &
1 - alpha exp{ left( frac{ 0^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ 1^2 }{ sigma^2 } right) } &
dots &
- alpha exp{ left( frac{ (n-2)^2 }{ sigma^2 } right) } \
vdots & vdots & vdots & ddots & vdots \
- alpha exp{ left( frac{ (1-N)^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ (2-N)^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ (3-N)^2 }{ sigma^2 } right) } &
dots &
1 - alpha exp{ left( frac{ (N-N)^2 }{ sigma^2 } right) } \
end{bmatrix}^{-1}.
end{align}



Any help would be much appreciated!



Thank you very much,



Katie










share|cite|improve this question











$endgroup$




I am trying to analytically find the inverse of a matrix given by:
begin{align}
W = left( I - alpha e^A right)^{-1},
end{align}

where $I$ is the identity matrix of appropriate size, $e^A$ denotes elementwise exponential of $A$ and
begin{align}
A = begin{bmatrix}
frac{ (1-1)^2 }{ sigma^2 } & frac{ (2-1)^2 }{ sigma^2 } &
frac{ (3-1)^2 }{ sigma^2 } & dots & frac{ (n-1)^2 }{ sigma^2 } \
frac{ (1-2)^2 }{ sigma^2 } & frac{ (2-2)^2 }{ sigma^2 } &
frac{ (3-2)^2 }{ sigma^2 } & dots & frac{ (n-2)^2 }{ sigma^2 } \
vdots & vdots & vdots & ddots & vdots \
frac{ (1-N)^2 }{ sigma^2 } & frac{ (2-N)^2 }{ sigma^2 } &
frac{ (3-N)^2 }{ sigma^2 } & dots & frac{ (N-N)^2 }{ sigma^2 } \
end{bmatrix},
end{align}

so that I'm trying to find
begin{align}
W = begin{bmatrix}
1 - alpha exp{ left( frac{ 0^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ 1^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ 2^2 }{ sigma^2 } right) } &
dots &
- alpha exp{ left( frac{ (n-1)^2 }{ sigma^2 } right) } \
- alpha exp{ left( frac{ 1^2 }{ sigma^2 } right) } &
1 - alpha exp{ left( frac{ 0^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ 1^2 }{ sigma^2 } right) } &
dots &
- alpha exp{ left( frac{ (n-2)^2 }{ sigma^2 } right) } \
vdots & vdots & vdots & ddots & vdots \
- alpha exp{ left( frac{ (1-N)^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ (2-N)^2 }{ sigma^2 } right) } &
- alpha exp{ left( frac{ (3-N)^2 }{ sigma^2 } right) } &
dots &
1 - alpha exp{ left( frac{ (N-N)^2 }{ sigma^2 } right) } \
end{bmatrix}^{-1}.
end{align}



Any help would be much appreciated!



Thank you very much,



Katie







matrices inverse






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 23 '18 at 15:29









user1551

72.5k566127




72.5k566127










asked Dec 20 '18 at 21:05









KatieKatie

486




486












  • $begingroup$
    Are you trying to find $W^{-1}$? That would be the last matrix because $(A^{-1})^{-1}$...
    $endgroup$
    – Viktor Glombik
    Dec 20 '18 at 21:08










  • $begingroup$
    Your matrix $W$ has only zeros on the diagonal and is symmetric, have you tried diagonalisation?
    $endgroup$
    – Viktor Glombik
    Dec 20 '18 at 21:09






  • 1




    $begingroup$
    How do you define $e^A$ ?
    $endgroup$
    – Damien
    Dec 20 '18 at 21:21










  • $begingroup$
    Thank you everyone for your interest in my question. I'm trying to find W, as opposed to $W^{-1}$, as that would simply be $I - alpha e^A$, which would be wonderfully easy! W unfortunately does not have 0's on the diagonal, but rather $1-alpha$. I have looked at diagonalisation but haven't made much progress. Regarding the definition of $e^A$, I wondered if there were multiple definitions of a matrix exponential, which is why I included the expanded matrix at the end. I've simply taken the exponential of each matrix element. This may be wrong? Thanks again, Katie.
    $endgroup$
    – Katie
    Dec 20 '18 at 22:18








  • 1




    $begingroup$
    The classical definition of $e^A$ corresponds to en.wikipedia.org/wiki/Matrix_exponential
    $endgroup$
    – Damien
    Dec 21 '18 at 14:38


















  • $begingroup$
    Are you trying to find $W^{-1}$? That would be the last matrix because $(A^{-1})^{-1}$...
    $endgroup$
    – Viktor Glombik
    Dec 20 '18 at 21:08










  • $begingroup$
    Your matrix $W$ has only zeros on the diagonal and is symmetric, have you tried diagonalisation?
    $endgroup$
    – Viktor Glombik
    Dec 20 '18 at 21:09






  • 1




    $begingroup$
    How do you define $e^A$ ?
    $endgroup$
    – Damien
    Dec 20 '18 at 21:21










  • $begingroup$
    Thank you everyone for your interest in my question. I'm trying to find W, as opposed to $W^{-1}$, as that would simply be $I - alpha e^A$, which would be wonderfully easy! W unfortunately does not have 0's on the diagonal, but rather $1-alpha$. I have looked at diagonalisation but haven't made much progress. Regarding the definition of $e^A$, I wondered if there were multiple definitions of a matrix exponential, which is why I included the expanded matrix at the end. I've simply taken the exponential of each matrix element. This may be wrong? Thanks again, Katie.
    $endgroup$
    – Katie
    Dec 20 '18 at 22:18








  • 1




    $begingroup$
    The classical definition of $e^A$ corresponds to en.wikipedia.org/wiki/Matrix_exponential
    $endgroup$
    – Damien
    Dec 21 '18 at 14:38
















$begingroup$
Are you trying to find $W^{-1}$? That would be the last matrix because $(A^{-1})^{-1}$...
$endgroup$
– Viktor Glombik
Dec 20 '18 at 21:08




$begingroup$
Are you trying to find $W^{-1}$? That would be the last matrix because $(A^{-1})^{-1}$...
$endgroup$
– Viktor Glombik
Dec 20 '18 at 21:08












$begingroup$
Your matrix $W$ has only zeros on the diagonal and is symmetric, have you tried diagonalisation?
$endgroup$
– Viktor Glombik
Dec 20 '18 at 21:09




$begingroup$
Your matrix $W$ has only zeros on the diagonal and is symmetric, have you tried diagonalisation?
$endgroup$
– Viktor Glombik
Dec 20 '18 at 21:09




1




1




$begingroup$
How do you define $e^A$ ?
$endgroup$
– Damien
Dec 20 '18 at 21:21




$begingroup$
How do you define $e^A$ ?
$endgroup$
– Damien
Dec 20 '18 at 21:21












$begingroup$
Thank you everyone for your interest in my question. I'm trying to find W, as opposed to $W^{-1}$, as that would simply be $I - alpha e^A$, which would be wonderfully easy! W unfortunately does not have 0's on the diagonal, but rather $1-alpha$. I have looked at diagonalisation but haven't made much progress. Regarding the definition of $e^A$, I wondered if there were multiple definitions of a matrix exponential, which is why I included the expanded matrix at the end. I've simply taken the exponential of each matrix element. This may be wrong? Thanks again, Katie.
$endgroup$
– Katie
Dec 20 '18 at 22:18






$begingroup$
Thank you everyone for your interest in my question. I'm trying to find W, as opposed to $W^{-1}$, as that would simply be $I - alpha e^A$, which would be wonderfully easy! W unfortunately does not have 0's on the diagonal, but rather $1-alpha$. I have looked at diagonalisation but haven't made much progress. Regarding the definition of $e^A$, I wondered if there were multiple definitions of a matrix exponential, which is why I included the expanded matrix at the end. I've simply taken the exponential of each matrix element. This may be wrong? Thanks again, Katie.
$endgroup$
– Katie
Dec 20 '18 at 22:18






1




1




$begingroup$
The classical definition of $e^A$ corresponds to en.wikipedia.org/wiki/Matrix_exponential
$endgroup$
– Damien
Dec 21 '18 at 14:38




$begingroup$
The classical definition of $e^A$ corresponds to en.wikipedia.org/wiki/Matrix_exponential
$endgroup$
– Damien
Dec 21 '18 at 14:38










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047961%2finverse-of-identity-minus-exponential-matrix%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047961%2finverse-of-identity-minus-exponential-matrix%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna