What are the prime divisors of $det(A_n)$, where $A_n$ is the $ntimes n$ matrix given by...












3












$begingroup$


For $ninmathbb{Z}_{ge 1}$, let $A_n$ be the $ntimes n$ matrix given by $(A_n)_{i,j}={nchoose |i-j|}$. From this post it is clear that
$$det(A_n)=prod_{k=0}^{n-1}left[left(expleft(frac{2pi k i}{n}right)+1right)^n-1right]=prod_{k=0}^{n-1}left(2^n(-1)^kcos^nleft(frac{pi k}nright)-1right).$$
Also, $det(A_n)$ is obviously integer for all $n$, and $det(A_n)=0$ iff $6mid n$.



Question: What is known about the (prime) divisors of $det(A_n)$?



If this is too broad, I am particularly interested in pairs $(p,d)$ where $p$ is prime with $dmid p-1$ and $pnmiddet(A_{(p-1)/d})$.



Edit: It seems like the product with cosines in it is integer independent of the exponent, see this question of mine.



Edit 2: The first few values of $det A_n$ are:
begin{align*}
det(A_1) &= 1\
det(A_2) &= -3=-(2^2-1)cdot 1^2\
det(A_3) &= 28 = (2^3-1)cdot2^2\
det(A_4) &= -375 = (2^4-1)cdot5^2\
det(A_5) &= 3751 = (2^5-1)cdot11^2\
det(A_6) &= 0\
det(A_7) &= 6835648 = (2^7-1)cdot232^2\
det(A_8) &=-1343091375 = -(2^8-1)cdot2295^2\
det(A_9) &= 364668913756 = (2^9-1)cdot26714^2
end{align*}



Edit 3: It looks like this is called 'Wendt's determinant'. My entire motivation for asking this question had to do with a possible proof for Fermat's last theorem and this link is apparently known as 'Wendt's theorem'










share|cite|improve this question











$endgroup$












  • $begingroup$
    It looks like $det(A_n)=(-1)^{n+1}(2^n-1)m(n)^2$ for some $m:mathbb{Z}tomathbb{Z}$.
    $endgroup$
    – Mastrem
    Dec 20 '18 at 21:21












  • $begingroup$
    $m(n)$ must be the product over $0<2k<n$.
    $endgroup$
    – metamorphy
    Dec 20 '18 at 22:03










  • $begingroup$
    @metamorhpy. Oh, nevermind, I got it. Also, if $dmid k$, then $det A_dmid det A_k$
    $endgroup$
    – Mastrem
    Dec 20 '18 at 22:16










  • $begingroup$
    I found oeis.org/search?q=232%2C2295&language=english&go=Search
    $endgroup$
    – Mastrem
    Dec 21 '18 at 10:27










  • $begingroup$
    See oeis.org/A048954 and oeis.org/A215615
    $endgroup$
    – lhf
    Dec 21 '18 at 10:28
















3












$begingroup$


For $ninmathbb{Z}_{ge 1}$, let $A_n$ be the $ntimes n$ matrix given by $(A_n)_{i,j}={nchoose |i-j|}$. From this post it is clear that
$$det(A_n)=prod_{k=0}^{n-1}left[left(expleft(frac{2pi k i}{n}right)+1right)^n-1right]=prod_{k=0}^{n-1}left(2^n(-1)^kcos^nleft(frac{pi k}nright)-1right).$$
Also, $det(A_n)$ is obviously integer for all $n$, and $det(A_n)=0$ iff $6mid n$.



Question: What is known about the (prime) divisors of $det(A_n)$?



If this is too broad, I am particularly interested in pairs $(p,d)$ where $p$ is prime with $dmid p-1$ and $pnmiddet(A_{(p-1)/d})$.



Edit: It seems like the product with cosines in it is integer independent of the exponent, see this question of mine.



Edit 2: The first few values of $det A_n$ are:
begin{align*}
det(A_1) &= 1\
det(A_2) &= -3=-(2^2-1)cdot 1^2\
det(A_3) &= 28 = (2^3-1)cdot2^2\
det(A_4) &= -375 = (2^4-1)cdot5^2\
det(A_5) &= 3751 = (2^5-1)cdot11^2\
det(A_6) &= 0\
det(A_7) &= 6835648 = (2^7-1)cdot232^2\
det(A_8) &=-1343091375 = -(2^8-1)cdot2295^2\
det(A_9) &= 364668913756 = (2^9-1)cdot26714^2
end{align*}



Edit 3: It looks like this is called 'Wendt's determinant'. My entire motivation for asking this question had to do with a possible proof for Fermat's last theorem and this link is apparently known as 'Wendt's theorem'










share|cite|improve this question











$endgroup$












  • $begingroup$
    It looks like $det(A_n)=(-1)^{n+1}(2^n-1)m(n)^2$ for some $m:mathbb{Z}tomathbb{Z}$.
    $endgroup$
    – Mastrem
    Dec 20 '18 at 21:21












  • $begingroup$
    $m(n)$ must be the product over $0<2k<n$.
    $endgroup$
    – metamorphy
    Dec 20 '18 at 22:03










  • $begingroup$
    @metamorhpy. Oh, nevermind, I got it. Also, if $dmid k$, then $det A_dmid det A_k$
    $endgroup$
    – Mastrem
    Dec 20 '18 at 22:16










  • $begingroup$
    I found oeis.org/search?q=232%2C2295&language=english&go=Search
    $endgroup$
    – Mastrem
    Dec 21 '18 at 10:27










  • $begingroup$
    See oeis.org/A048954 and oeis.org/A215615
    $endgroup$
    – lhf
    Dec 21 '18 at 10:28














3












3








3





$begingroup$


For $ninmathbb{Z}_{ge 1}$, let $A_n$ be the $ntimes n$ matrix given by $(A_n)_{i,j}={nchoose |i-j|}$. From this post it is clear that
$$det(A_n)=prod_{k=0}^{n-1}left[left(expleft(frac{2pi k i}{n}right)+1right)^n-1right]=prod_{k=0}^{n-1}left(2^n(-1)^kcos^nleft(frac{pi k}nright)-1right).$$
Also, $det(A_n)$ is obviously integer for all $n$, and $det(A_n)=0$ iff $6mid n$.



Question: What is known about the (prime) divisors of $det(A_n)$?



If this is too broad, I am particularly interested in pairs $(p,d)$ where $p$ is prime with $dmid p-1$ and $pnmiddet(A_{(p-1)/d})$.



Edit: It seems like the product with cosines in it is integer independent of the exponent, see this question of mine.



Edit 2: The first few values of $det A_n$ are:
begin{align*}
det(A_1) &= 1\
det(A_2) &= -3=-(2^2-1)cdot 1^2\
det(A_3) &= 28 = (2^3-1)cdot2^2\
det(A_4) &= -375 = (2^4-1)cdot5^2\
det(A_5) &= 3751 = (2^5-1)cdot11^2\
det(A_6) &= 0\
det(A_7) &= 6835648 = (2^7-1)cdot232^2\
det(A_8) &=-1343091375 = -(2^8-1)cdot2295^2\
det(A_9) &= 364668913756 = (2^9-1)cdot26714^2
end{align*}



Edit 3: It looks like this is called 'Wendt's determinant'. My entire motivation for asking this question had to do with a possible proof for Fermat's last theorem and this link is apparently known as 'Wendt's theorem'










share|cite|improve this question











$endgroup$




For $ninmathbb{Z}_{ge 1}$, let $A_n$ be the $ntimes n$ matrix given by $(A_n)_{i,j}={nchoose |i-j|}$. From this post it is clear that
$$det(A_n)=prod_{k=0}^{n-1}left[left(expleft(frac{2pi k i}{n}right)+1right)^n-1right]=prod_{k=0}^{n-1}left(2^n(-1)^kcos^nleft(frac{pi k}nright)-1right).$$
Also, $det(A_n)$ is obviously integer for all $n$, and $det(A_n)=0$ iff $6mid n$.



Question: What is known about the (prime) divisors of $det(A_n)$?



If this is too broad, I am particularly interested in pairs $(p,d)$ where $p$ is prime with $dmid p-1$ and $pnmiddet(A_{(p-1)/d})$.



Edit: It seems like the product with cosines in it is integer independent of the exponent, see this question of mine.



Edit 2: The first few values of $det A_n$ are:
begin{align*}
det(A_1) &= 1\
det(A_2) &= -3=-(2^2-1)cdot 1^2\
det(A_3) &= 28 = (2^3-1)cdot2^2\
det(A_4) &= -375 = (2^4-1)cdot5^2\
det(A_5) &= 3751 = (2^5-1)cdot11^2\
det(A_6) &= 0\
det(A_7) &= 6835648 = (2^7-1)cdot232^2\
det(A_8) &=-1343091375 = -(2^8-1)cdot2295^2\
det(A_9) &= 364668913756 = (2^9-1)cdot26714^2
end{align*}



Edit 3: It looks like this is called 'Wendt's determinant'. My entire motivation for asking this question had to do with a possible proof for Fermat's last theorem and this link is apparently known as 'Wendt's theorem'







matrices number-theory binomial-coefficients determinant products






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 21 '18 at 10:30







Mastrem

















asked Dec 20 '18 at 20:36









MastremMastrem

3,79211230




3,79211230












  • $begingroup$
    It looks like $det(A_n)=(-1)^{n+1}(2^n-1)m(n)^2$ for some $m:mathbb{Z}tomathbb{Z}$.
    $endgroup$
    – Mastrem
    Dec 20 '18 at 21:21












  • $begingroup$
    $m(n)$ must be the product over $0<2k<n$.
    $endgroup$
    – metamorphy
    Dec 20 '18 at 22:03










  • $begingroup$
    @metamorhpy. Oh, nevermind, I got it. Also, if $dmid k$, then $det A_dmid det A_k$
    $endgroup$
    – Mastrem
    Dec 20 '18 at 22:16










  • $begingroup$
    I found oeis.org/search?q=232%2C2295&language=english&go=Search
    $endgroup$
    – Mastrem
    Dec 21 '18 at 10:27










  • $begingroup$
    See oeis.org/A048954 and oeis.org/A215615
    $endgroup$
    – lhf
    Dec 21 '18 at 10:28


















  • $begingroup$
    It looks like $det(A_n)=(-1)^{n+1}(2^n-1)m(n)^2$ for some $m:mathbb{Z}tomathbb{Z}$.
    $endgroup$
    – Mastrem
    Dec 20 '18 at 21:21












  • $begingroup$
    $m(n)$ must be the product over $0<2k<n$.
    $endgroup$
    – metamorphy
    Dec 20 '18 at 22:03










  • $begingroup$
    @metamorhpy. Oh, nevermind, I got it. Also, if $dmid k$, then $det A_dmid det A_k$
    $endgroup$
    – Mastrem
    Dec 20 '18 at 22:16










  • $begingroup$
    I found oeis.org/search?q=232%2C2295&language=english&go=Search
    $endgroup$
    – Mastrem
    Dec 21 '18 at 10:27










  • $begingroup$
    See oeis.org/A048954 and oeis.org/A215615
    $endgroup$
    – lhf
    Dec 21 '18 at 10:28
















$begingroup$
It looks like $det(A_n)=(-1)^{n+1}(2^n-1)m(n)^2$ for some $m:mathbb{Z}tomathbb{Z}$.
$endgroup$
– Mastrem
Dec 20 '18 at 21:21






$begingroup$
It looks like $det(A_n)=(-1)^{n+1}(2^n-1)m(n)^2$ for some $m:mathbb{Z}tomathbb{Z}$.
$endgroup$
– Mastrem
Dec 20 '18 at 21:21














$begingroup$
$m(n)$ must be the product over $0<2k<n$.
$endgroup$
– metamorphy
Dec 20 '18 at 22:03




$begingroup$
$m(n)$ must be the product over $0<2k<n$.
$endgroup$
– metamorphy
Dec 20 '18 at 22:03












$begingroup$
@metamorhpy. Oh, nevermind, I got it. Also, if $dmid k$, then $det A_dmid det A_k$
$endgroup$
– Mastrem
Dec 20 '18 at 22:16




$begingroup$
@metamorhpy. Oh, nevermind, I got it. Also, if $dmid k$, then $det A_dmid det A_k$
$endgroup$
– Mastrem
Dec 20 '18 at 22:16












$begingroup$
I found oeis.org/search?q=232%2C2295&language=english&go=Search
$endgroup$
– Mastrem
Dec 21 '18 at 10:27




$begingroup$
I found oeis.org/search?q=232%2C2295&language=english&go=Search
$endgroup$
– Mastrem
Dec 21 '18 at 10:27












$begingroup$
See oeis.org/A048954 and oeis.org/A215615
$endgroup$
– lhf
Dec 21 '18 at 10:28




$begingroup$
See oeis.org/A048954 and oeis.org/A215615
$endgroup$
– lhf
Dec 21 '18 at 10:28










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047946%2fwhat-are-the-prime-divisors-of-deta-n-where-a-n-is-the-n-times-n-matri%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047946%2fwhat-are-the-prime-divisors-of-deta-n-where-a-n-is-the-n-times-n-matri%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna