Uniform convergence of Binomial series on $Bbb{R}$












0












$begingroup$


Consider the Binomial series



begin{align} (1+x)^alpha =sum^{infty}_{k=0}{alphachoose k}x^k,;text{for };xin Bbb{R};text{and};alphainBbb{R} end{align}
I want to show that it converges uniformly on $Bbb{R}$.



However, it can be shown by D'Alembert's Ratio test that the following series converges absolutely begin{align} F(alpha) =sum^{infty}_{k=0}{alphachoose k}x^k,;text{for fixed};|x|<1;text{and};alphainBbb{R} end{align}
since begin{align} limlimits_{ktoinfty}left|dfrac{^alpha C_{k+1}}{^alpha C_{k}}right|=limlimits_{ktoinfty}left|dfrac{alpha-k}{k+1}right|=|x|<1,;text{for fixed};|x|<1;text{and};alphainBbb{R} end{align}
QUESTION: How do I get uniform convergence of $F$ on $Bbb{R}$ from there? Alternatively, if there's any other way of showing that it converges uniformly on $Bbb{R}$, I will appreciate.










share|cite|improve this question











$endgroup$












  • $begingroup$
    It won't converge uniformly on $Bbb R$ (unless $alpha=0$). It may or may not converge uniformly on $(-1,1)$, but that will depend on the value of $alpha$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 8 at 7:00










  • $begingroup$
    @Lord Shark the Unknown: But William R. Wade-Introduction to Analysis-Pearson tells me it converges uniformly on $Bbb{R}$
    $endgroup$
    – Omojola Micheal
    Jan 8 at 7:03












  • $begingroup$
    In line 2 you say 'for $|x| <1$' and in line 3 you ask for uniform convergence of $mathbb R$
    $endgroup$
    – Kavi Rama Murthy
    Jan 8 at 7:21












  • $begingroup$
    @Kavi Rama Murthy: Sorry, I corrected the error.
    $endgroup$
    – Omojola Micheal
    Jan 8 at 7:24
















0












$begingroup$


Consider the Binomial series



begin{align} (1+x)^alpha =sum^{infty}_{k=0}{alphachoose k}x^k,;text{for };xin Bbb{R};text{and};alphainBbb{R} end{align}
I want to show that it converges uniformly on $Bbb{R}$.



However, it can be shown by D'Alembert's Ratio test that the following series converges absolutely begin{align} F(alpha) =sum^{infty}_{k=0}{alphachoose k}x^k,;text{for fixed};|x|<1;text{and};alphainBbb{R} end{align}
since begin{align} limlimits_{ktoinfty}left|dfrac{^alpha C_{k+1}}{^alpha C_{k}}right|=limlimits_{ktoinfty}left|dfrac{alpha-k}{k+1}right|=|x|<1,;text{for fixed};|x|<1;text{and};alphainBbb{R} end{align}
QUESTION: How do I get uniform convergence of $F$ on $Bbb{R}$ from there? Alternatively, if there's any other way of showing that it converges uniformly on $Bbb{R}$, I will appreciate.










share|cite|improve this question











$endgroup$












  • $begingroup$
    It won't converge uniformly on $Bbb R$ (unless $alpha=0$). It may or may not converge uniformly on $(-1,1)$, but that will depend on the value of $alpha$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 8 at 7:00










  • $begingroup$
    @Lord Shark the Unknown: But William R. Wade-Introduction to Analysis-Pearson tells me it converges uniformly on $Bbb{R}$
    $endgroup$
    – Omojola Micheal
    Jan 8 at 7:03












  • $begingroup$
    In line 2 you say 'for $|x| <1$' and in line 3 you ask for uniform convergence of $mathbb R$
    $endgroup$
    – Kavi Rama Murthy
    Jan 8 at 7:21












  • $begingroup$
    @Kavi Rama Murthy: Sorry, I corrected the error.
    $endgroup$
    – Omojola Micheal
    Jan 8 at 7:24














0












0








0


1



$begingroup$


Consider the Binomial series



begin{align} (1+x)^alpha =sum^{infty}_{k=0}{alphachoose k}x^k,;text{for };xin Bbb{R};text{and};alphainBbb{R} end{align}
I want to show that it converges uniformly on $Bbb{R}$.



However, it can be shown by D'Alembert's Ratio test that the following series converges absolutely begin{align} F(alpha) =sum^{infty}_{k=0}{alphachoose k}x^k,;text{for fixed};|x|<1;text{and};alphainBbb{R} end{align}
since begin{align} limlimits_{ktoinfty}left|dfrac{^alpha C_{k+1}}{^alpha C_{k}}right|=limlimits_{ktoinfty}left|dfrac{alpha-k}{k+1}right|=|x|<1,;text{for fixed};|x|<1;text{and};alphainBbb{R} end{align}
QUESTION: How do I get uniform convergence of $F$ on $Bbb{R}$ from there? Alternatively, if there's any other way of showing that it converges uniformly on $Bbb{R}$, I will appreciate.










share|cite|improve this question











$endgroup$




Consider the Binomial series



begin{align} (1+x)^alpha =sum^{infty}_{k=0}{alphachoose k}x^k,;text{for };xin Bbb{R};text{and};alphainBbb{R} end{align}
I want to show that it converges uniformly on $Bbb{R}$.



However, it can be shown by D'Alembert's Ratio test that the following series converges absolutely begin{align} F(alpha) =sum^{infty}_{k=0}{alphachoose k}x^k,;text{for fixed};|x|<1;text{and};alphainBbb{R} end{align}
since begin{align} limlimits_{ktoinfty}left|dfrac{^alpha C_{k+1}}{^alpha C_{k}}right|=limlimits_{ktoinfty}left|dfrac{alpha-k}{k+1}right|=|x|<1,;text{for fixed};|x|<1;text{and};alphainBbb{R} end{align}
QUESTION: How do I get uniform convergence of $F$ on $Bbb{R}$ from there? Alternatively, if there's any other way of showing that it converges uniformly on $Bbb{R}$, I will appreciate.







real-analysis sequences-and-series analysis convergence power-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 7:24







Omojola Micheal

















asked Jan 8 at 6:58









Omojola MichealOmojola Micheal

1,999424




1,999424












  • $begingroup$
    It won't converge uniformly on $Bbb R$ (unless $alpha=0$). It may or may not converge uniformly on $(-1,1)$, but that will depend on the value of $alpha$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 8 at 7:00










  • $begingroup$
    @Lord Shark the Unknown: But William R. Wade-Introduction to Analysis-Pearson tells me it converges uniformly on $Bbb{R}$
    $endgroup$
    – Omojola Micheal
    Jan 8 at 7:03












  • $begingroup$
    In line 2 you say 'for $|x| <1$' and in line 3 you ask for uniform convergence of $mathbb R$
    $endgroup$
    – Kavi Rama Murthy
    Jan 8 at 7:21












  • $begingroup$
    @Kavi Rama Murthy: Sorry, I corrected the error.
    $endgroup$
    – Omojola Micheal
    Jan 8 at 7:24


















  • $begingroup$
    It won't converge uniformly on $Bbb R$ (unless $alpha=0$). It may or may not converge uniformly on $(-1,1)$, but that will depend on the value of $alpha$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 8 at 7:00










  • $begingroup$
    @Lord Shark the Unknown: But William R. Wade-Introduction to Analysis-Pearson tells me it converges uniformly on $Bbb{R}$
    $endgroup$
    – Omojola Micheal
    Jan 8 at 7:03












  • $begingroup$
    In line 2 you say 'for $|x| <1$' and in line 3 you ask for uniform convergence of $mathbb R$
    $endgroup$
    – Kavi Rama Murthy
    Jan 8 at 7:21












  • $begingroup$
    @Kavi Rama Murthy: Sorry, I corrected the error.
    $endgroup$
    – Omojola Micheal
    Jan 8 at 7:24
















$begingroup$
It won't converge uniformly on $Bbb R$ (unless $alpha=0$). It may or may not converge uniformly on $(-1,1)$, but that will depend on the value of $alpha$.
$endgroup$
– Lord Shark the Unknown
Jan 8 at 7:00




$begingroup$
It won't converge uniformly on $Bbb R$ (unless $alpha=0$). It may or may not converge uniformly on $(-1,1)$, but that will depend on the value of $alpha$.
$endgroup$
– Lord Shark the Unknown
Jan 8 at 7:00












$begingroup$
@Lord Shark the Unknown: But William R. Wade-Introduction to Analysis-Pearson tells me it converges uniformly on $Bbb{R}$
$endgroup$
– Omojola Micheal
Jan 8 at 7:03






$begingroup$
@Lord Shark the Unknown: But William R. Wade-Introduction to Analysis-Pearson tells me it converges uniformly on $Bbb{R}$
$endgroup$
– Omojola Micheal
Jan 8 at 7:03














$begingroup$
In line 2 you say 'for $|x| <1$' and in line 3 you ask for uniform convergence of $mathbb R$
$endgroup$
– Kavi Rama Murthy
Jan 8 at 7:21






$begingroup$
In line 2 you say 'for $|x| <1$' and in line 3 you ask for uniform convergence of $mathbb R$
$endgroup$
– Kavi Rama Murthy
Jan 8 at 7:21














$begingroup$
@Kavi Rama Murthy: Sorry, I corrected the error.
$endgroup$
– Omojola Micheal
Jan 8 at 7:24




$begingroup$
@Kavi Rama Murthy: Sorry, I corrected the error.
$endgroup$
– Omojola Micheal
Jan 8 at 7:24










1 Answer
1






active

oldest

votes


















1












$begingroup$

A series of the type $sum a_k x^{k}$ cannot converge uniformly on $mathbb R$ unless $a_k=0$ for all but finite number of $k$'s. (This is because the general term does not tend to $0$ uniformly).






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065878%2funiform-convergence-of-binomial-series-on-bbbr%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    A series of the type $sum a_k x^{k}$ cannot converge uniformly on $mathbb R$ unless $a_k=0$ for all but finite number of $k$'s. (This is because the general term does not tend to $0$ uniformly).






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      A series of the type $sum a_k x^{k}$ cannot converge uniformly on $mathbb R$ unless $a_k=0$ for all but finite number of $k$'s. (This is because the general term does not tend to $0$ uniformly).






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        A series of the type $sum a_k x^{k}$ cannot converge uniformly on $mathbb R$ unless $a_k=0$ for all but finite number of $k$'s. (This is because the general term does not tend to $0$ uniformly).






        share|cite|improve this answer









        $endgroup$



        A series of the type $sum a_k x^{k}$ cannot converge uniformly on $mathbb R$ unless $a_k=0$ for all but finite number of $k$'s. (This is because the general term does not tend to $0$ uniformly).







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 8 at 7:23









        Kavi Rama MurthyKavi Rama Murthy

        71.2k53170




        71.2k53170






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065878%2funiform-convergence-of-binomial-series-on-bbbr%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna