About limit of variable x y
$begingroup$
Suppose $a>0,b>0,r=sqrt{x^2+y^2}$
1)proof $x^ay^b=o(r^l)(rrightarrow 0),0<l<a+b$
$2)lim_{(x,y)rightarrow (0,0)}frac{x^ay^b}{r^{a+b}} $exist or not
My attempt
1)$$frac{x^ay^b}{r^l}=frac{x^ay^b}{(x^2+y^2)^frac{l}{2}}le frac{1}{2^l}frac{x^ay^b}{(xy)^{frac{l}{2}}}$$
And I don’t know what to do next
2)let $y=x$, $xrightarrow 0$ then I get the limit is $$frac{1}{2^{frac{a+b}{2}}}$$
and I let $y=0,xrightarrow 0$,I get the limit equal $0$ ,am I right?
Thanks for your help!
real-analysis calculus functional-analysis limits analysis
$endgroup$
add a comment |
$begingroup$
Suppose $a>0,b>0,r=sqrt{x^2+y^2}$
1)proof $x^ay^b=o(r^l)(rrightarrow 0),0<l<a+b$
$2)lim_{(x,y)rightarrow (0,0)}frac{x^ay^b}{r^{a+b}} $exist or not
My attempt
1)$$frac{x^ay^b}{r^l}=frac{x^ay^b}{(x^2+y^2)^frac{l}{2}}le frac{1}{2^l}frac{x^ay^b}{(xy)^{frac{l}{2}}}$$
And I don’t know what to do next
2)let $y=x$, $xrightarrow 0$ then I get the limit is $$frac{1}{2^{frac{a+b}{2}}}$$
and I let $y=0,xrightarrow 0$,I get the limit equal $0$ ,am I right?
Thanks for your help!
real-analysis calculus functional-analysis limits analysis
$endgroup$
add a comment |
$begingroup$
Suppose $a>0,b>0,r=sqrt{x^2+y^2}$
1)proof $x^ay^b=o(r^l)(rrightarrow 0),0<l<a+b$
$2)lim_{(x,y)rightarrow (0,0)}frac{x^ay^b}{r^{a+b}} $exist or not
My attempt
1)$$frac{x^ay^b}{r^l}=frac{x^ay^b}{(x^2+y^2)^frac{l}{2}}le frac{1}{2^l}frac{x^ay^b}{(xy)^{frac{l}{2}}}$$
And I don’t know what to do next
2)let $y=x$, $xrightarrow 0$ then I get the limit is $$frac{1}{2^{frac{a+b}{2}}}$$
and I let $y=0,xrightarrow 0$,I get the limit equal $0$ ,am I right?
Thanks for your help!
real-analysis calculus functional-analysis limits analysis
$endgroup$
Suppose $a>0,b>0,r=sqrt{x^2+y^2}$
1)proof $x^ay^b=o(r^l)(rrightarrow 0),0<l<a+b$
$2)lim_{(x,y)rightarrow (0,0)}frac{x^ay^b}{r^{a+b}} $exist or not
My attempt
1)$$frac{x^ay^b}{r^l}=frac{x^ay^b}{(x^2+y^2)^frac{l}{2}}le frac{1}{2^l}frac{x^ay^b}{(xy)^{frac{l}{2}}}$$
And I don’t know what to do next
2)let $y=x$, $xrightarrow 0$ then I get the limit is $$frac{1}{2^{frac{a+b}{2}}}$$
and I let $y=0,xrightarrow 0$,I get the limit equal $0$ ,am I right?
Thanks for your help!
real-analysis calculus functional-analysis limits analysis
real-analysis calculus functional-analysis limits analysis
asked Jan 8 at 6:02
jacksonjackson
1379
1379
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your answer for 2) is correct. For i) use polar coordinates. $frac {|x|^{a}|y|^{b}} {r^{ l }}=r^{a+b-l} (|cos (theta)|)^{a} (|sin (theta)|)^{b}) to 0$.
$endgroup$
$begingroup$
Sin($theta)$’s power should be b?
$endgroup$
– jackson
Jan 8 at 6:15
$begingroup$
@jackson Sure! Corrected.
$endgroup$
– Kavi Rama Murthy
Jan 8 at 6:18
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065849%2fabout-limit-of-variable-x-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your answer for 2) is correct. For i) use polar coordinates. $frac {|x|^{a}|y|^{b}} {r^{ l }}=r^{a+b-l} (|cos (theta)|)^{a} (|sin (theta)|)^{b}) to 0$.
$endgroup$
$begingroup$
Sin($theta)$’s power should be b?
$endgroup$
– jackson
Jan 8 at 6:15
$begingroup$
@jackson Sure! Corrected.
$endgroup$
– Kavi Rama Murthy
Jan 8 at 6:18
add a comment |
$begingroup$
Your answer for 2) is correct. For i) use polar coordinates. $frac {|x|^{a}|y|^{b}} {r^{ l }}=r^{a+b-l} (|cos (theta)|)^{a} (|sin (theta)|)^{b}) to 0$.
$endgroup$
$begingroup$
Sin($theta)$’s power should be b?
$endgroup$
– jackson
Jan 8 at 6:15
$begingroup$
@jackson Sure! Corrected.
$endgroup$
– Kavi Rama Murthy
Jan 8 at 6:18
add a comment |
$begingroup$
Your answer for 2) is correct. For i) use polar coordinates. $frac {|x|^{a}|y|^{b}} {r^{ l }}=r^{a+b-l} (|cos (theta)|)^{a} (|sin (theta)|)^{b}) to 0$.
$endgroup$
Your answer for 2) is correct. For i) use polar coordinates. $frac {|x|^{a}|y|^{b}} {r^{ l }}=r^{a+b-l} (|cos (theta)|)^{a} (|sin (theta)|)^{b}) to 0$.
edited Jan 8 at 6:17
answered Jan 8 at 6:12
Kavi Rama MurthyKavi Rama Murthy
71.2k53170
71.2k53170
$begingroup$
Sin($theta)$’s power should be b?
$endgroup$
– jackson
Jan 8 at 6:15
$begingroup$
@jackson Sure! Corrected.
$endgroup$
– Kavi Rama Murthy
Jan 8 at 6:18
add a comment |
$begingroup$
Sin($theta)$’s power should be b?
$endgroup$
– jackson
Jan 8 at 6:15
$begingroup$
@jackson Sure! Corrected.
$endgroup$
– Kavi Rama Murthy
Jan 8 at 6:18
$begingroup$
Sin($theta)$’s power should be b?
$endgroup$
– jackson
Jan 8 at 6:15
$begingroup$
Sin($theta)$’s power should be b?
$endgroup$
– jackson
Jan 8 at 6:15
$begingroup$
@jackson Sure! Corrected.
$endgroup$
– Kavi Rama Murthy
Jan 8 at 6:18
$begingroup$
@jackson Sure! Corrected.
$endgroup$
– Kavi Rama Murthy
Jan 8 at 6:18
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065849%2fabout-limit-of-variable-x-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown