About limit of variable x y












0












$begingroup$


Suppose $a>0,b>0,r=sqrt{x^2+y^2}$



1)proof $x^ay^b=o(r^l)(rrightarrow 0),0<l<a+b$



$2)lim_{(x,y)rightarrow (0,0)}frac{x^ay^b}{r^{a+b}} $exist or not



My attempt



1)$$frac{x^ay^b}{r^l}=frac{x^ay^b}{(x^2+y^2)^frac{l}{2}}le frac{1}{2^l}frac{x^ay^b}{(xy)^{frac{l}{2}}}$$
And I don’t know what to do next



2)let $y=x$, $xrightarrow 0$ then I get the limit is $$frac{1}{2^{frac{a+b}{2}}}$$



and I let $y=0,xrightarrow 0$,I get the limit equal $0$ ,am I right?



Thanks for your help!










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Suppose $a>0,b>0,r=sqrt{x^2+y^2}$



    1)proof $x^ay^b=o(r^l)(rrightarrow 0),0<l<a+b$



    $2)lim_{(x,y)rightarrow (0,0)}frac{x^ay^b}{r^{a+b}} $exist or not



    My attempt



    1)$$frac{x^ay^b}{r^l}=frac{x^ay^b}{(x^2+y^2)^frac{l}{2}}le frac{1}{2^l}frac{x^ay^b}{(xy)^{frac{l}{2}}}$$
    And I don’t know what to do next



    2)let $y=x$, $xrightarrow 0$ then I get the limit is $$frac{1}{2^{frac{a+b}{2}}}$$



    and I let $y=0,xrightarrow 0$,I get the limit equal $0$ ,am I right?



    Thanks for your help!










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Suppose $a>0,b>0,r=sqrt{x^2+y^2}$



      1)proof $x^ay^b=o(r^l)(rrightarrow 0),0<l<a+b$



      $2)lim_{(x,y)rightarrow (0,0)}frac{x^ay^b}{r^{a+b}} $exist or not



      My attempt



      1)$$frac{x^ay^b}{r^l}=frac{x^ay^b}{(x^2+y^2)^frac{l}{2}}le frac{1}{2^l}frac{x^ay^b}{(xy)^{frac{l}{2}}}$$
      And I don’t know what to do next



      2)let $y=x$, $xrightarrow 0$ then I get the limit is $$frac{1}{2^{frac{a+b}{2}}}$$



      and I let $y=0,xrightarrow 0$,I get the limit equal $0$ ,am I right?



      Thanks for your help!










      share|cite|improve this question









      $endgroup$




      Suppose $a>0,b>0,r=sqrt{x^2+y^2}$



      1)proof $x^ay^b=o(r^l)(rrightarrow 0),0<l<a+b$



      $2)lim_{(x,y)rightarrow (0,0)}frac{x^ay^b}{r^{a+b}} $exist or not



      My attempt



      1)$$frac{x^ay^b}{r^l}=frac{x^ay^b}{(x^2+y^2)^frac{l}{2}}le frac{1}{2^l}frac{x^ay^b}{(xy)^{frac{l}{2}}}$$
      And I don’t know what to do next



      2)let $y=x$, $xrightarrow 0$ then I get the limit is $$frac{1}{2^{frac{a+b}{2}}}$$



      and I let $y=0,xrightarrow 0$,I get the limit equal $0$ ,am I right?



      Thanks for your help!







      real-analysis calculus functional-analysis limits analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 8 at 6:02









      jacksonjackson

      1379




      1379






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Your answer for 2) is correct. For i) use polar coordinates. $frac {|x|^{a}|y|^{b}} {r^{ l }}=r^{a+b-l} (|cos (theta)|)^{a} (|sin (theta)|)^{b}) to 0$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Sin($theta)$’s power should be b?
            $endgroup$
            – jackson
            Jan 8 at 6:15










          • $begingroup$
            @jackson Sure! Corrected.
            $endgroup$
            – Kavi Rama Murthy
            Jan 8 at 6:18












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065849%2fabout-limit-of-variable-x-y%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Your answer for 2) is correct. For i) use polar coordinates. $frac {|x|^{a}|y|^{b}} {r^{ l }}=r^{a+b-l} (|cos (theta)|)^{a} (|sin (theta)|)^{b}) to 0$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Sin($theta)$’s power should be b?
            $endgroup$
            – jackson
            Jan 8 at 6:15










          • $begingroup$
            @jackson Sure! Corrected.
            $endgroup$
            – Kavi Rama Murthy
            Jan 8 at 6:18
















          2












          $begingroup$

          Your answer for 2) is correct. For i) use polar coordinates. $frac {|x|^{a}|y|^{b}} {r^{ l }}=r^{a+b-l} (|cos (theta)|)^{a} (|sin (theta)|)^{b}) to 0$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Sin($theta)$’s power should be b?
            $endgroup$
            – jackson
            Jan 8 at 6:15










          • $begingroup$
            @jackson Sure! Corrected.
            $endgroup$
            – Kavi Rama Murthy
            Jan 8 at 6:18














          2












          2








          2





          $begingroup$

          Your answer for 2) is correct. For i) use polar coordinates. $frac {|x|^{a}|y|^{b}} {r^{ l }}=r^{a+b-l} (|cos (theta)|)^{a} (|sin (theta)|)^{b}) to 0$.






          share|cite|improve this answer











          $endgroup$



          Your answer for 2) is correct. For i) use polar coordinates. $frac {|x|^{a}|y|^{b}} {r^{ l }}=r^{a+b-l} (|cos (theta)|)^{a} (|sin (theta)|)^{b}) to 0$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 8 at 6:17

























          answered Jan 8 at 6:12









          Kavi Rama MurthyKavi Rama Murthy

          71.2k53170




          71.2k53170












          • $begingroup$
            Sin($theta)$’s power should be b?
            $endgroup$
            – jackson
            Jan 8 at 6:15










          • $begingroup$
            @jackson Sure! Corrected.
            $endgroup$
            – Kavi Rama Murthy
            Jan 8 at 6:18


















          • $begingroup$
            Sin($theta)$’s power should be b?
            $endgroup$
            – jackson
            Jan 8 at 6:15










          • $begingroup$
            @jackson Sure! Corrected.
            $endgroup$
            – Kavi Rama Murthy
            Jan 8 at 6:18
















          $begingroup$
          Sin($theta)$’s power should be b?
          $endgroup$
          – jackson
          Jan 8 at 6:15




          $begingroup$
          Sin($theta)$’s power should be b?
          $endgroup$
          – jackson
          Jan 8 at 6:15












          $begingroup$
          @jackson Sure! Corrected.
          $endgroup$
          – Kavi Rama Murthy
          Jan 8 at 6:18




          $begingroup$
          @jackson Sure! Corrected.
          $endgroup$
          – Kavi Rama Murthy
          Jan 8 at 6:18


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065849%2fabout-limit-of-variable-x-y%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna